CSE 473
Chapter 11

Planning,
Planning, and more
Planning

Things we will munch on today

- Regression Planning
* Partial order Planning
* GRAPHPIlan

Regressing to Last Lecture

Progression Planning " ap.B T
T = Fly(Fy .A.B) I AlP,, Al ——
AP, . A) — { o
(a)
AP A) e S -
P A FlyiP, AB) —] AP, A —
At{P, . B) .
A : 7 ""--..._.-
"-..._-‘z AI[‘P1 , AJ f
o At(F, . B) |H IEE"IFH AB) | i TR
§ i | At(P, , B)
i)
e — At(P, . B)
-— A AR M i A
At(P, , B) (P AB) L
AtiP, , A) ,
""’M\.___ - Regression Planning

© CSE AT faculty

Regression Planning

How to determine predecessors?

What are the states from which applying a given

action leads to the goal?
Goal state = A1(C1, B) DAKCZ, B) [1... DATH(CZ20, B)
Relevant action for first conjunct. Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) [JAt(p, B) DAHCZ, B) [J...

[OAHC20, B)

Actions must not undo desired literals (consistent)

* Main advantage: only relevant actions are considered
Often much lower branching factor than forward
search.

Admissible heuristics can be used with A* search to
find optimal solutions (see Section 11.2)

© CSE AT faculty

Partial-order planning

* Progression and regression planning are fotally
ordered plan search methods.

Can't work on subproblems independently and
combine solutions

* Partial-order planning uses a “least commitment
strategy"”:

Find subplans for achieving subgoals and combine
them to get final plan

© CSE AT faculty

Shoe example

Init()
Goal(RightShoeOn O LeftShoeOn)

Action(RightShoe,
PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock,
PRECOND:

EFFECT: RightSockOn)

Action(LeftShoe,
PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock,
PRECOND:

EFFECT: LeftSockOn)

Planner: Two subplans (actions can be interleaved)
(1) leftsock, leftshoe and (2) rightsock, rightshoe

© CSE AT faculty.

Partial-order planning (POP)

Partial Omder Plan: Total Order Plans:

Start Start Start Start Start Start Start

/ \ Right Right Left Laft Right Lt
i Rt Seck Sock Sock Seck Sock Sock

Seck Seck + * + * * *

Laft Laft Right Right Right Laft
Seck Seck Saock Seck Shos Shoa

LeftSockiCn RightSockOn + + + C *ﬂ * *
Lok ight Right Left Right = Laft Right
Shos Shoa Sh+oa Sh:a Slre Sh*oa 310k So*ck
Laft Right Laft Right Left Right
Shos Shoe Shos Shoa Shos Shosa

Le#ShoeOn, RightShosOn * * + * * *
Finish Finish Finish Finish Finish Finish Finish

© CSE AT faculty

POP as a search problem

States are (unfinished) plans.
The empty plan contains only Startand Finish actions.
Each plan has 4 components:
A set of "actions” (steps of the plan)
A set of ordering constraints: A < B (A before B)
* Cycles represent contradictions.
A set of causal links between actions
* The plan may not be extended by adding a new
action C that conflicts with the causal link
A set of open preconditions.
* Preconditions not achieved by actions in the plan

A partial order plan can be executed by repeatedly
choosing any of the possible next actions.

This flexibility is a benefit in non-cooperative
environments.

© CSE AT faculty

POP as a search problem

- Initial plan contains:
Startand Finish
ordering constraint Start < Finish
no causal links yet
all the preconditions in Finish are open (yet to be
satisfied)
« Successor function :
+ picks one open precondition p on an action B and
* generates a successor plan for every possible
consistent way of choosing action A that achieves p.
+ Test goal
* Heuristic function used to decide which open
precondition to pick (e.g., most constrained first)

© CSE AT faculty

9

Blocks World Example

Actions with Preconditions and Effects:

Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x, Table)

Clear(z) On(x.y)

+ several inequality constraints

© CSE AT faculty

10

© CSE AT faculty

Blocks World Example

START [E]
On(C,A) On(A, Table) CI(B) On(B,Table) CI(C)
On(A.B) On(B,C) g
FINISH

11

© CSE AT faculty

Blocks World Example

I
START E n
On(C,A) On(A, Table) CI(B) On(B,Table) CI(C)

\\

c:?s) On(B,z) CI C)
F'utOn(B C)

On(A.B) On(ﬁw

FINISH

(o] =]]

12

Blocks World Example

START [E]
On(C,A) On(A,Table) CI(B) On(B, Table) CI(C)

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

!B) OnBz) C.’C)
Cl{A) (A, z) cmg)

- PulOn(BC
PutOn(AB) ==~

\

On?A.B) On(g,‘C)

ol of |

FINISH

© CSE AT faculty 13

Blocks World Example
On(C,A) On(A, B, Table) CI{C)

1 / PutOn(A,B)
lobbers CI(B
e V4 P §>°orc7: aft(er)
On{C.z) CI(C) PutOn(B,C)
PutOnTable(C) - Eln.‘n,tg)bl(g,cé)l(c)
=~ => order after
S~ ? ? ’ PutOnTable(C)
--._\ CI(B) On(B,z) CI(C)
C!(A) On(A,z) CI(B)
PutOn(AB) Le=—" /
On?'A.B) On(g,‘C) [A]

5]
FINISH

Final Plan: START, PutOnTable(C), PutOn(B,C), PutOn(A,B), FINISH

© CSE AT faculty 14

POP Algorithm

Correctness: Every output of the POP algorithm is a
complete, correct plan.

Completeness: If breadth-first-search is used, the
algorithm finds a solution if one exists.

© CSE AT faculty 15

GraphPlan Algorithm: Basic idea

- Construct a graph that encodes constraints
on possible plans
- Use this "planning graph” to constrain search
for a valid plan:
If valid plan exists, it is a subgraph of the
planning graph
* Planning graph can be built for each problem
in polynomial time
- Sound, complete and will terminate with
failure if there is no plan.

© CSE AT faculty 16

GraphPlan

* Phase 1 - Graph Expansion

Necessary (but not sufficient) conditions for
plan existence

Constraints between actions/effects
elucidated
 Phase 2 - Solution Extraction

Backwards search through graph to find
actions satisfying goals

© CSE AT faculty

17

The Plan Graph

I
B o) B
~) ~
N 6\)
Y.
level O level 1
level O
O O

© CSE AT faculty

18

Expansion of Plan Graph

((d (4
S S S
S & & & 8
& e & ¢ 8
aY) o) o vV
(9) (9)
level O level 1 level 2
level O level 1
0)

© CSE AT faculty

19

Graph Expansion

Initial State: level 0

initial set of literals

Action level i
no-op for each literal at level i
action for each case where

preconditions exist at level i

Literals level i+1

effects of each action and no-op at level i+1

© CSE AT faculty

20

10

Mutual Exclusion

N o
o —0
<< P
o (o)
o 0~ Pp
Two actions are mutex if o
« one clobbers the other’s effects or preconditions, or ~ o
« they have mutex preconditions o P
o 0
o o
Two literals are mutex if ° 0
-one is the negation of the other, or PO
-all ways of achieving them are mutex
o
o\
o pA0 o]
o o
(o] o o 0
o -p (o] o
0

© CSE AT faculty 21

GraphPlan Algorithm

* Create level O in planning graph
* Loop
If goals O current level literals and all hon-mutex

then search graph for solution
« If a solution was found, return and terminate

Else extend graph one more level

Forward direction checks necessary conditions
for a solution...
Backward search constructs actual solution...

© CSE AT faculty 22

1

Searching for a Solution Plan

» Backwards search on the planning graph
* Achieve goals level by level

- At level k, pick a subset of non-mutex
actions to achieve current goals. Their
preconditions become the goals for k-1 level.

* At level O, check to see if all goals satisfied

© CSE AT faculty 23

Searching for a Solution

If goals are present & non-mutex:

(X<}

Choose action to achieve each goal
Add preconditions to next goal set

© CSE AT faculty 24

Planning a Dinner Date

Initial Conditions: cleanHands [quiet

Goal: noGarbage []dinner [] gift

Actions:
carry precondition:
effect: noGarbage 00-cleanHands
dolly precondition:
effect: noGarbage [-quiet
cook precondition: cleanHands
effect. dinner
wrap precondition: quiet
effect: gift

© CSE AT faculty 25

Planning Graph

noGarb
carry
cleanH cleanH
dolly
quiet quiet
cook
dinner
wrap
gift
I I I I I
0 Lit 0 Acltion 1 %it 1 Actilon 2 Lit

|
© CSE AT faculty 26

13

Are there any mutexes?
noGarb

/ ----- » means negates
0..'
L2 ..A

(carry
cleanH [cleanH
\ dolly /
. \ ...A .
quiet : \ quiet
“took
dinner
wrap \
gift
I I I I I
0 Lit 0 Acfion 1 ILit 1 Actilon 2 Il,it

© CSE AT faculty

27

Do we have a solution?

carry

L4
.O

cleanH—°
Any non-mutex ways

of achieving all goals?

I I I
0 Lit 0 Acltion 1 Lit 1 Actilon 2 Irit

© CSE AT faculty

28

14

Extend the Planning Graph

noGarb

carry /

L4
‘e

cleanH— ¢ cleanH

— quiet
“cook ~_
dinner
wrap \
gift
I I I
0 Lit 0 Acltion 1 ILit

© CSE AT faculty

(o)

carry,..//
...
. A cleanH

dolly-.,

‘e

—Aquiet

coo

(G
\ wmp\

)

| |
1 Actilon 2 Il,it

29

Searching Backwards

noGarb

carry /

L4
.O

cleanH—— | ° cleanH

[
0 Lit

© CSE AT faculty

carry,/'
.....
A cleanH

dOll}IQN

.
e

—A quiet

\ cook\

—— " (e

30

15

Searching Backwards
noGarb »| noGarb
-

carr//
cleanH “& cleanH = A cleanH
dolly ~.... dolly.,.
‘ O.A ‘ '....A .
quiet quiet —quiet

\ cook\
"{ dinner } \ —\P‘

\ cook «~
wrap wra
Dy S

| | | | |
0 Lit 0 Acfion 1 ILit 1 Actilon 2 Il,it

© CSE AT faculty 31

carry

L4
‘e

Extracted (Partial Order) Plan
noGarb

carr ,{/
#..
L}
cleanH . A cleanH

dolly -,
quiet A quiet
cook ~ .
e }———"
wrap wrap\
[[[[[
0 Lit 0 Acltion 1 %it 1 Actilon 2 Irit

© CSE AT faculty 32

16

Next Time

« SATPlan

* Uncertainty!

» Things to do:
Go over HW #4 (programming project)
Pick programming project partner(s)

© CSE AT faculty

33

17

