
1

CSE 473

Chapter 11

Planning,

Planning, and more

Planning

CSE 473

Chapter 11

Planning,

Planning, and more

Planning

© CSE AI faculty 2

Things we will munch on today

• Regression Planning
• Partial order Planning
• GRAPHPlan

2

© CSE AI faculty 3

Regressing to Last Lecture

Progression Planning

Regression Planning

© CSE AI faculty 4

Regression Planning
• How to determine predecessors?

 What are the states from which applying a given
action leads to the goal?
Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ …

∧ At(C20, B)

• Actions must not undo desired literals (consistent)
• Main advantage: only relevant actions are considered

 Often much lower branching factor than forward
search.

• Admissible heuristics can be used with A* search to
find optimal solutions (see Section 11.2)

3

© CSE AI faculty 5

Partial-order planning

• Progression and regression planning are totally
ordered plan search methods.
 Can’t work on subproblems independently and
combine solutions

• Partial-order planning uses a “least commitment
strategy”:
 Find subplans for achieving subgoals and combine
them to get final plan

© CSE AI faculty 6

Shoe example
Init()

Goal(RightShoeOn ∧ LeftShoeOn)

Action(RightShoe,
PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock,
PRECOND:
EFFECT: RightSockOn)

Action(LeftShoe,
PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock,
PRECOND:
EFFECT: LeftSockOn)

Planner: Two subplans (actions can be interleaved)
(1) leftsock, leftshoe and (2) rightsock, rightshoe

4

© CSE AI faculty 7

Partial-order planning (POP)

© CSE AI faculty 8

POP as a search problem
• States are (unfinished) plans.

 The empty plan contains only Start and Finish actions.
• Each plan has 4 components:

 A set of “actions” (steps of the plan)
 A set of ordering constraints: A < B (A before B)

• Cycles represent contradictions.
 A set of causal links between actions

• The plan may not be extended by adding a new
action C that conflicts with the causal link

 A set of open preconditions.
• Preconditions not achieved by actions in the plan

• A partial order plan can be executed by repeatedly
choosing any of the possible next actions.
 This flexibility is a benefit in non-cooperative
environments.

5

© CSE AI faculty 9

• Initial plan contains:
 Start and Finish
 ordering constraint Start < Finish
 no causal links yet
 all the preconditions in Finish are open (yet to be
satisfied)

• Successor function :
• picks one open precondition p on an action B and
• generates a successor plan for every possible
consistent way of choosing action A that achieves p.

• Test goal
• Heuristic function used to decide which open
precondition to pick (e.g., most constrained first)

POP as a search problem

© CSE AI faculty 10

Blocks World Example

Actions with Preconditions and Effects:

6

© CSE AI faculty 11

Blocks World Example

© CSE AI faculty 12

Blocks World Example

7

© CSE AI faculty 13

Blocks World Example

© CSE AI faculty 14

Blocks World Example

Final Plan: START, PutOnTable(C), PutOn(B,C), PutOn(A,B), FINISH

Done!

8

© CSE AI faculty 15

POP Algorithm

Correctness: Every output of the POP algorithm is a
complete, correct plan.

Completeness: If breadth-first-search is used, the
algorithm finds a solution if one exists.

© CSE AI faculty 16

GraphPlan Algorithm: Basic idea

• Construct a graph that encodes constraints
on possible plans

• Use this “planning graph” to constrain search
for a valid plan:
 If valid plan exists, it is a subgraph of the
planning graph

• Planning graph can be built for each problem
in polynomial time

• Sound, complete and will terminate with
failure if there is no plan.

9

© CSE AI faculty 17

GraphPlan

• Phase 1 - Graph Expansion
 Necessary (but not sufficient) conditions for
plan existence

 Constraints between actions/effects
elucidated

• Phase 2 - Solution Extraction
 Backwards search through graph to find
actions satisfying goals

© CSE AI faculty 18

The Plan Graph

…

…

…

level 0 level 1 level 4 level 6

level 0 level 3 level 5

Li
te
ra
ls

A
ct
io
ns

Li
te
ra
ls

pr
op
os
it
io
ns

pr
op
os
it
io
ns

ac
ti
on
s

ac
ti
on
s

10

© CSE AI faculty 19

Expansion of Plan Graph

…

…

…

level 0 level 1 level 2 level 6

level 0 level 1 level 5

Li
te
ra
ls

A
ct
io
ns

Li
te
ra
ls

pr
op
os
it
io
ns

ac
ti
on
s

A
ct
io
ns

Li
te
ra
ls

© CSE AI faculty 20

Graph Expansion

Initial State: level 0

initial set of literals

Action level i

no-op for each literal at level i

action for each case where

preconditions exist at level i

Literals level i+1

effects of each action and no-op at level i+1

…

…

…

…

i i i+10

11

© CSE AI faculty 21

Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions, or
• they have mutex preconditions

Two literals are mutex if
•one is the negation of the other, or
•all ways of achieving them are mutex

p

¬¬¬¬p

p

¬¬¬¬p

p

¬¬¬¬p

© CSE AI faculty 22

GraphPlan Algorithm

• Create level 0 in planning graph
• Loop
If goals ⊆ current level literals and all non-mutex
 then search graph for solution

• If a solution was found, return and terminate

Else extend graph one more level

Forward direction checks necessary conditions
for a solution...

Backward search constructs actual solution...

12

© CSE AI faculty 23

Searching for a Solution Plan

• Backwards search on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex
actions to achieve current goals. Their
preconditions become the goals for k-1 level.

• At level 0, check to see if all goals satisfied

© CSE AI faculty 24

Searching for a Solution

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set

13

© CSE AI faculty 25

Planning a Dinner Date
Initial Conditions: cleanHands ∧ quiet

Goal: noGarbage ∧ dinner ∧ gift

Actions:

carry precondition:

effect: noGarbage ∧ ¬cleanHands

dolly precondition:

effect: noGarbage ∧ ¬quiet

cook precondition: cleanHands

effect: dinner

wrap precondition: quiet

effect: gift

© CSE AI faculty 26

Planning Graph
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

cleanH

quiet

0 Lit 0 Action 1 Lit 1 Action 2 Lit

14

© CSE AI faculty 27

Are there any mutexes?
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

cleanH

quiet

0 Lit 0 Action 1 Lit 1 Action 2 Lit

means negates

© CSE AI faculty 28

Do we have a solution?
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

cleanH

quiet

0 Lit 0 Action 1 Lit 1 Action 2 Lit

Any non-mutex ways

of achieving all goals?

15

© CSE AI faculty 29

Extend the Planning Graph
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

gift

0 Lit 0 Action 1 Lit 1 Action 2 Lit

© CSE AI faculty 30

Searching Backwards
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

gift

0 Lit 0 Action 1 Lit 1 Action 2 Lit

16

© CSE AI faculty 31

Searching Backwards
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

gift

0 Lit 0 Action 1 Lit 1 Action 2 Lit

© CSE AI faculty 32

Extracted (Partial Order) Plan
noGarb

cleanH

quiet

dinner

gift

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

gift

0 Lit 0 Action 1 Lit 1 Action 2 Lit

17

© CSE AI faculty 33

Next Time

• SATPlan
• Uncertainty!
• Things to do:
 Go over HW #4 (programming project)
 Pick programming project partner(s)

