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Things we will munch on today

• Regression Planning
• Partial order Planning
• GRAPHPlan
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Regressing to Last Lecture

Progression Planning

Regression Planning
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Regression Planning
• How to determine predecessors?

 What  are the states from which applying a given 
action leads to the goal?
Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ …

∧ At(C20, B)

• Actions must not undo desired literals (consistent)
• Main advantage: only relevant actions are considered

 Often much lower branching factor than forward 
search.

• Admissible heuristics can be used with A* search to 
find optimal solutions (see Section 11.2)
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Partial-order planning

• Progression and regression planning are totally 
ordered plan search methods.
 Can’t work on subproblems independently and 
combine solutions

• Partial-order planning uses a “least commitment 
strategy”:
 Find subplans for achieving subgoals and combine 
them to get final plan
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Shoe example
Init()

Goal(RightShoeOn ∧ LeftShoeOn)

Action(RightShoe,
PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock,
PRECOND: 
EFFECT: RightSockOn)

Action(LeftShoe,
PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock,
PRECOND: 
EFFECT: LeftSockOn)

Planner: Two subplans (actions can be interleaved)
(1) leftsock, leftshoe and (2) rightsock, rightshoe
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Partial-order planning (POP)
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POP as a search problem
• States are (unfinished) plans.

 The empty plan contains only Start and Finish actions.
• Each plan has 4 components:

 A set of “actions” (steps of the plan)
 A set of ordering constraints: A < B (A before B)

• Cycles represent contradictions.
 A set of causal links between actions

• The plan may not be extended by adding a new 
action C that conflicts with the causal link

 A set of open preconditions.
• Preconditions not achieved by actions in the plan

• A partial order plan can be executed by repeatedly 
choosing any of the possible next actions.
 This flexibility is a benefit in non-cooperative 
environments.
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• Initial plan contains:
 Start and Finish
 ordering constraint Start < Finish
 no causal links yet
 all the preconditions in Finish are open (yet to be 
satisfied)

• Successor function :
• picks one open precondition p on an action B and
• generates a successor plan for every possible 
consistent way of choosing action A that achieves p.

• Test goal
• Heuristic function used to decide which open 
precondition to pick (e.g., most constrained first)

POP as a search problem
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Blocks World Example

Actions with Preconditions and Effects:
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Blocks World Example
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Blocks World Example
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Blocks World Example
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Blocks World Example

Final Plan: START, PutOnTable(C), PutOn(B,C), PutOn(A,B), FINISH

Done!



8

© CSE AI faculty 15

POP Algorithm

Correctness: Every output of the POP algorithm is a 
complete, correct plan.

Completeness: If breadth-first-search is used, the 
algorithm finds a solution if one exists.
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GraphPlan Algorithm: Basic idea

• Construct a graph that encodes constraints 
on possible plans

• Use this “planning graph” to constrain search 
for a valid plan:
 If valid plan exists, it is a subgraph of the 
planning graph

• Planning graph can be built for each problem 
in polynomial time

• Sound, complete and will terminate with 
failure if there is no plan.
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GraphPlan

• Phase 1 - Graph Expansion
 Necessary (but not sufficient) conditions for 
plan existence

 Constraints between actions/effects 
elucidated

• Phase 2 - Solution Extraction
 Backwards search through graph to find 
actions satisfying goals
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The Plan Graph
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Expansion of Plan Graph
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Graph Expansion

Initial State: level 0 

initial set of literals

Action level i

no-op for each literal at level i

action for each case where 

preconditions exist at level i

Literals level i+1

effects of each action and no-op at level i+1
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Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions, or
• they have mutex preconditions

Two literals are mutex if
•one is the negation of the other, or 
•all ways of achieving them are mutex

p

¬¬¬¬p

p

¬¬¬¬p

p

¬¬¬¬p
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GraphPlan Algorithm

• Create level 0 in planning graph
• Loop
If goals ⊆ current level literals and all non-mutex
 then search graph for solution

• If a solution was found, return and terminate

Else extend graph one more level

Forward direction checks necessary conditions 
for a solution...

Backward search constructs actual solution...
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Searching for a Solution Plan

• Backwards search on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex
actions to achieve current goals. Their 
preconditions become the goals for k-1 level.

• At level 0, check to see if all goals satisfied
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Searching for a Solution

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set
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Planning a Dinner Date
Initial Conditions: cleanHands ∧ quiet

Goal: noGarbage ∧ dinner ∧ gift

Actions:

carry  precondition:

effect: noGarbage ∧ ¬cleanHands

dolly   precondition:

effect: noGarbage ∧ ¬quiet

cook   precondition: cleanHands

effect: dinner

wrap   precondition: quiet

effect: gift
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Planning Graph
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Are there any mutexes?
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Do we have a solution?
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Extend the Planning Graph
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Searching Backwards
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Searching Backwards
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Extracted (Partial Order) Plan
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Next Time

• SATPlan
• Uncertainty!
• Things to do:
 Go over HW #4 (programming project)
 Pick programming project partner(s)


