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Outline for Next Few Lectures

• Basic notions
 Atomic events, probabilities, joint distribution
 Inference by enumeration
 Independence & conditional independence
 Bayes’ rule

• Bayesian networks
• Statistical learning
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Logic     vs. Probability

Symbol: Q, R … Random variable: Q …

Boolean values: T, F Values/Domain: you specify
e.g. {heads, tails} [1,6]

State of the world: 
Assignment of T/F to 
all Q, R … Z

Atomic event: a complete
assignment of values to Q… Z
• Mutually exclusive
• Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

Joint distribution: Prob.
of every atomic event
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Types of Random Variables
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Axioms of Probability Theory
• Just 3 are enough to build entire theory!

 1. All probabilities between 0 and 1
 0 ≤ P(A) ≤ 1
 2. P(true) = 1   and P(false) = 0
 3. Probability of  disjunction of events is:
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Prior and Joint Probability

We will see later how any question can be answered by 
the joint distribution

0.2
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Conditional (or Posterior) Probability
• Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8
i.e., given that Toothache is true (and all I know)

• Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element 
vectors (2 P values when Toothache is true and 2 when false)

• If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) = ?

• New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

1
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes that B is the only info known.
• Defined as:
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Dilemma at the Dentist’s

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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P(toothache) = ?

Probabilistic Inference by Enumeration

P(toothache)= .108+.012+.016+.064
= .20  or 20%
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Inference by Enumeration

P(toothache∨cavity) = ? .20 +   ?.108 + .012 + .072 + 
.008-(.108+.012)

= .28
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Inference by Enumeration
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Problems with Enumeration

• Worst case time: O(dn)
 Where d = max arity of random variables  

e.g., d = 2 for Boolean (T/F)
 And n = number of random variables

• Space complexity also O(dn)  
 Size of joint distribution

• Problem: Hard/impossible to estimate 
all O(dn) entries for large problems
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Independence

• A and B are independent iff:
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These two constraints are 
logically equivalent

• Therefore, if A and B are independent:
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Independence

Complete independence is powerful but rare
What to do if it doesn’t hold?

4 values
2 values
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Conditional Independence

Instead of 7 entries, only need 5 (why?)
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Conditional Independence II
P(catch | toothache,  cavity) = P(catch |  cavity)
P(catch | toothache,¬cavity) = P(catch |¬cavity)

Why only 5 entries in table?
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Power of Cond. Independence

• Often, using conditional independence 
reduces the storage complexity of the joint 
distribution from exponential to linear!!

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments.
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Next Time

• Bayes’ Rule
• Bayesian Inference
• Bayesian Networks

Bayes
rules!


