CSE 473

Chapter 13

More Uncertainty

Outline for Next Few Lectures

- Basic notions

Atomic events, probabilities, joint distribution
Inference by enumeration
Independence \& conditional independence Bayes' rule

- Bayesian networks
- Statistical learning

Logic vs. Probability

Symbol: Q, R ...	Random variable: $Q \ldots$
Boolean values: T, F	Values/Domain: you specify e.g. \{heads, tails\} [1,6]
State of the world: Assignment of T/F to all $Q, R \ldots Z$	Atomic event: a complete assignment of values to $Q \ldots Z$ - Mutually exclusive - Exhaustive
	Prior probability (aka Unconditional prob: P(Q)
	Joint distribution: Prob. of every atomic event

Types of Random Variables

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of \langle sunny, rain, cloudy, snow \rangle

Weather = rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., $\operatorname{Temp}=21.6$; also allow, e.g., $\operatorname{Temp}<22.0$.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

- Just 3 are enough to build entire theory!

1. All probabilities between 0 and 1
$0 \leq P(A) \leq 1$
2. $P($ true $)=1$ and $P($ false $)=0$
3. Probability of disjunction of events is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Prior and Joint Probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.2$ and $P($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\langle 0.72,0.1,0.08,0.1\rangle(\text { normalized, i.e., sums to } 1)
$$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

$$
\begin{array}{l|llll}
\text { Weather }= & \text { sunny } & \text { rain } & \text { cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

We will see later how any question can be answered by the joint distribution

Conditional (or Posterior) Probability

- Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that Toothache is true (and all I know)
- Notation for conditional distributions:

P(Cavity | Toothache) $=2$-element vector of 2-element
vectors (2 P values when Toothache is true and 2 when false)

- If we know more, e.g., cavity is also given, then we have
$\mathrm{P}($ cavity \mid toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification: $P($ cavity \mid toothache, sunny $)=P($ cavity \lceil toothache $)=0.8$

Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes that B is the only info known.
- Defined as:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Dilemma at the Dentist's

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?

Probabilistic Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\Sigma_{\omega: \omega \models \phi} P(\omega)
$$

$$
\begin{aligned}
P(\text { toothache }) & =.108+.012+.016+.064 \\
& =.20 \text { or } 20 \%
\end{aligned}
$$

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$$
P(\text { toothachevcavity })=\begin{array}{r}
.20+.108+.012+.072+ \\
.008-(.108+.012)
\end{array}
$$

$$
=.28
$$

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \longleftarrow \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Problems with Enumeration

- Worst case time: $O\left(\mathrm{~d}^{n}\right)$

Where $\mathrm{d}=$ max arity of random variables e.g., $d=2$ for Boolean (T/F)

And $n=$ number of random variables

- Space complexity also $O\left(d^{n}\right)$

Size of joint distribution

- Problem: Hard/impossible to estimate all $O\left(\mathrm{~d}^{n}\right)$ entries for large problems

Independence

- A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

These two constraints are logically equivalent

- Therefore, if A and B are independent:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A) \\
& P(A \wedge B)=P(A) P(B)
\end{aligned}
$$

Independence

A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad$ or $\quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad$ or $\quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$

$\xrightarrow[\mathbf{P}(\text { Toothache }, \text { Catch, Cavity, Weather })]{=} \quad 2$ values 4 values
32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Complete independence is powerful but rare What to do if it doesn't hold?

Conditional Independence

\mathbf{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Instead of 7 entries, only need 5 (why?)

Conditional Independence II

$P($ catch | toothache, cavity $)=P($ catch | cavity $)$
P (catch | toothache,\neg cavity $)=P($ catch | \neg cavity $)$
Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$
Why only 5 entries in table?
Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch, Cavity $)$
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
l.e., $2+2+1=5$ independent numbers

Power of Cond. Independence

- Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic \& robust form of knowledge about uncertain environments.

Next Time

- Bayes' Rule
- Bayesian Inference
- Bayesian Networks

