

Logic vs	. Probability				
Symbol: Q, R	Random variable: Q				
Boolean values: T, F	Values/Domain: you specify e.g. {heads, tails} [1,6]				
State of the world: Assignment of T/F to all Q, R Z	Atomic event: a complete assignment of values to Q Z • Mutually exclusive • Exhaustive				
	Prior probability (aka Unconditional prob: P(Q)				
	Joint distribution: Prob. of every atomic event				

Frequency of the second s

Prior and Joint Probability Prior or unconditional probabilities of propositions e.g., $P(Cavity = true) = 0.2$ and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence						
Probability distribution gives values for all possible assignments: $P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1) Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s						
$\mathbf{P}(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$						
$Weather = sunny \ rain \ cloudy \ snow$						
Cavity = true = 0.144 = 0.02 = 0.016 = 0.02						
$Cavity = false \begin{array}{c} 0.576 & 0.08 & 0.064 & 0.08 \end{array}$						
We will see later how any question can be answered by the joint distribution						

		toothache		⊐ toothache	
		catch	\neg catch	catch	\neg catch
	cavity	.108	.012	.072	.008
	\neg cavity	.016	.064	.144	.576
r any prop	osition ϕ , su $\Sigma_{\omega:\omega\models\phi}P(\omega)$		atomic ever	nts wher	e it is true

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576
				2 + .072

 $\begin{array}{l} \textbf{Conditional Independence}\\ \textbf{P}(Toothache, Cavity, Catch) has 2^3 - 1 = 7 independent entries\\ \textbf{If I have a cavity, the probability that the probe catches in it doesn't depend$ on whether I have a toothache: $(1) <math>P(catch|toothache, cavity) = P(catch|cavity)\\ \textbf{The same independence holds if I haven't got a cavity:$ $(2) <math>P(catch|toothache, \neg cavity) = P(catch|\neg cavity)\\ Catch is conditionally independent of Toothache given Cavity:$ $\textbf{P}(Catch|Toothache, Cavity) = \textbf{P}(Catch|Cavity)\\ \textbf{Testead of 7 entries, only need 5 (why?)}\\ \end{array}$

