CSE 473

Chapter 13

Bayes' Rule \& Bayesian Inference

Thomas Bayes

Publications:

- Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (1731)
- An Introduction to the Doctrine of Fluxions (1736)
- An Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Recall: Conditional Probability

- $\mathrm{P}(x \mid y)$ is the probability of x given y
- Assumes that y is the only info known.
- Defined as:

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& P(y \mid x)=\frac{P(y, x)}{P(x)}=\frac{P(x, y)}{P(x)}
\end{aligned}
$$

$$
\begin{gathered}
\text { Bayes' Rule }^{\prime} \\
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x) \\
\Rightarrow \\
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
\end{gathered}
$$

Bayes' rule is used to Compute Diagnostic Probability from Causal Probability

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(E f \text { fect } \mid \text { Cause }) P(\text { Cause })}{P(E f f e c t)}
$$

E.g. let M be meningitis, S be stiff neck $P(M)=0.0001$, $P(S)=0.1$,
$P(S \mid M)=0.8$

$$
\mathrm{P}(\mathrm{M} \mid S)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Normalization in Bayes' Rule

$$
\begin{gathered}
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\alpha P(y \mid x) P(x) \\
\alpha=P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{gathered}
$$

α is called the normalization constant

Cond. Independence and Naïve Bayes Model

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)$
$=\alpha \mathbf{P}($ toothache \wedge catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \mathbf{P}($ toothache \mid Cavity $) \mathbf{P}($ catch \mid Cavity $) \mathbf{P}($ Cavity $)$
This is an example of a naive Bayes model:
$\mathbf{P}\left(\right.$ Cause $, E f f_{\text {fect }}^{1}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}($ Cause $) \Pi_{i} \mathbf{P}\left(\right.$ Effect $_{i} \mid$ Cause $)$

Total number of parameters is linear in n

Example 1: State Estimation

- Suppose a robot obtains measurement z
- What is P(doorOpen/z)?

Causal vs. Diagnostic Reasoning

- $P(o p e n / z)$ is diagnostic.
- $P(z$ lopen $)$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allous us to use causal knowledge:
count frequencies!

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

State Estimation Example

- $P(z$ lopen $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$

$$
\begin{aligned}
& P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
& P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67
\end{aligned}
$$

Measurement z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_{2}.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption: z_{n} is independent of $z_{1, \ldots,}, z_{n-1}$ if we know x.

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\alpha P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)
\end{aligned}
$$

Incorporating a Second Measurement

- $P\left(z_{2}\right.$ lopen $)=0.5 \quad P\left(z_{2} \mid \neg\right.$ open $)=0.6$
- $P\left(\right.$ openiz $\left._{1}\right)=2 / 3=0.67$

$$
P\left(\text { open } \mid z_{2}, z_{1}\right)=\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)}
$$

$$
=\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
$$

- z_{2} lowers the probability that the door is open.

Example 2: Wumpus World

- Reduced wumpus world: only pits and breezes
- Squares adjacent to pits have breezes
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=$ square $[i, j]$ contains a pi \dagger
- $b_{i, j}=$ there is a breeze in square $[i, j]$
- Probability of a square containing a pit $=0.2$
- Known $=[1,1],[2,1]$ and $[1,2]$ contain no pit

$$
\cdot \text { known }=\neg \mathrm{p}_{1,1} \wedge \neg \mathrm{p}_{2,1} \wedge \neg \mathrm{p}_{1,2}
$$

- Breeze in [1,2] and [2,1]
$\cdot b=\neg b_{1,1} \wedge b_{2,1} \wedge b_{1,2}$

${ }^{4}$			${ }^{\text {a }}$
P?			
${ }^{12} \mathrm{~B}$	P?		
	${ }_{\text {os }}$	P?	

Is there a pit in $[1,3],[2,2]$ or $[3,1]$?

- Logical inference gives no definite answer \Rightarrow Must choose random action
- Can do better with probabilistic inference
- $\mathbf{P}\left(\mathrm{P}_{1,3} \mid\right.$ known,b)
$=\alpha \sum_{\text {unknown }} P\left(P_{1,3}\right.$, known,unknown, $\left.b\right)$

$=\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}\right.$, known, unknown $) P\left(P_{1,3}\right.$, known, unknown $)$
- Can be simplified using:
independence of pit occurrences across squares and conditional independence of breeze from other squares given neighboring squares
- We get (see text):
$\mathbf{P}\left(\mathrm{P}_{1,3} \mid\right.$ known, b$) \approx<0.31,0.69>$
$P\left(P_{2,2} \mid k n o w n, b\right) \approx<0.86,0.14>$

These calculations seem laborious to do for each problem domain is there a general representation scheme for probabilistic inference?

Enter...Bayesian networks (next time)

