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What are Bayesian networks?
• Simple, graphical notation for conditional independence 

assertions

• Allows compact specification of full joint distributions

• Syntax:
 a set of nodes, one per random variable
 a directed, acyclic graph (link ≈ "directly influences")
 a conditional distribution for each node given its 

parents:
 P (Xi | Parents (Xi))

• For discrete variables, conditional distribution = 
conditional probability table (CPT) = distribution over 
Xi for each combination of parent values
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Back at the Dentist’s

• Topology of network encodes conditional independence 
assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent of 

each other given Cavity
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Example 2: Burglars and Earthquakes
• You are at a “Done with 473” party at a friend’s.
• Neighbor John calls to say your home alarm is ringing 

(but neighbor Mary doesn't). 
• Sometimes your alarm is set off by minor earthquakes.

• Question: Is your home being burglarized?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, 
MaryCalls

• Network topology reflects "causal" knowledge:
 A burglar can set the alarm off
 An earthquake can set the alarm off
 The alarm can cause Mary to call
 The alarm can cause John to call
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Burglars and Earthquakes
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Compact Representation of Probabilities in 
Bayesian Networks

• A CPT for Boolean Xi with k Boolean parents has 2k rows 
for the combinations of parent values

• Each row requires 1 number p for Xi = true
(the number for Xi = false is just 1-p)

• If each variable has no more than k parents, the 
complete network requires O(n · 2k) numbers
 I.e., grows linearly with n, vs. O(2n) for full joint distribution

• For our network, 1+1+4+2+2 = 10 numbers (vs. 25-1 = 31)
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Semantics

Full joint distribution is defined as product of 
local conditional distributions:

P (X1, … ,Xn) = π
i = 1 P (Xi | Parents(Xi))

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)
= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)

n
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Constructing Bayesian networks

• 1. Choose an ordering of variables X1, … ,Xn
• 2. For i = 1 to n

 add Xi to the network
 select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:
P (X1, … ,Xn) = P (Xn | X1, … , Xn-1) P (X1, … , Xn-1)

= P (Xn | X1, … , Xn-1) P (Xn-1 | X1, … , Xn-2) P (X1, … , Xn-2)

= π i =1 P (Xi | X1, … , Xi-1) (chain rule)

= π i =1 P (Xi | Parents(Xi)) (by construction)

n

n
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• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

Example
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• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?  No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

Example
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• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? No P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B)?
P(B | A, J, M) = P(B | A)? 

Example
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• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? No P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B)? No
P(B | A, J, M) = P(B | A)? Yes

P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?

Example
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• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? No P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B)? No
P(B | A, J, M) = P(B | A)? Yes

P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes

Example
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Example contd.

• Deciding conditional independence is hard in non-
causal directions

• Causal models and conditional independence seem 
hardwired for humans! (recent Cog Sci research)

• Non-causal network is less compact: 1 + 2 + 4 + 2 + 
4 = 13 numbers (vs. 1+1+4+2+2 = 10 numbers)

vs.
Non-causal Causal
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Lesson: Add nodes 
representing “root 

causes” first, then the 
variables they 

influence, and so on.

Keep it causal, 
baby!
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Probabilistic Inference in BNs

•The graphical independence representation

 yields efficient inference schemes

•We generally want to compute 

 P(X|E) where E is evidence from sensory 

measurements etc. (known values for variables)

 Sometimes, may want to compute just P(X)

•One simple algorithm: 
 variable elimination (VE)
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = α Σ P(b,j,m,e,a)
e,a
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = αP(b) ΣP(e) ΣP(a|b,e)P(j|a)P(m|a)
e              a
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Structure of Computation

Repeated computations ⇒ use dynamic programming?
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Variable Elimination
• A factor is a function from some set of 
variables to a specific value: e.g., f(E,A,Mary)

 CPTs are factors, e.g., P(A|E,B) function of A,E,B

• VE works by eliminating all variables in turn until     

there is a factor with only query variable

•To eliminate a variable:
1. join all factors containing that variable (like 

DBs/SQL), multiplying probabilities
 2. sum out the influence of the variable on new factor
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Example of VE: P(J)

Earthqk Burgl

Alarm

MJ

P(J)

= ΣΣΣΣM,A,B,E P(J,M,A,B,E) 

= ΣΣΣΣM,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E)

= ΣΣΣΣAP(J|A) ΣΣΣΣMP(M|A) ΣΣΣΣBP(B) ΣΣΣΣEP(A|B,E)P(E)

= ΣΣΣΣAP(J|A) ΣΣΣΣMP(M|A) ΣΣΣΣBP(B) f1(A,B)

= ΣΣΣΣAP(N1|A) ΣΣΣΣMP(M|A) f2(A)

= ΣΣΣΣAP(J|A) f3(A)

= f4(J)
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Other Inference Algorithms
• Direct Sampling:

 Repeat N times:
• Use random number generator to generate sample values 

for each node
• Start with  nodes with no parents
• Condition on sampled parent values for other nodes

 Count frequencies of samples to get an 
approximation to joint distribution

• Other variants: Rejection sampling, likelihood weighting, 
Gibbs sampling and other MCMC methods (see text)

• Belief Propagation: A “message passing” algorithm for 
approximating P(X|evidence) for each node variable X

• Variational Methods: Approximate inference using 
distributions that are more tractable than original ones
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Summary

• Bayesian networks provide a natural way 
to represent conditional independence

• Network topology + CPTs = compact 
representation of joint distribution

• Generally easy for domain experts to 
construct

• BNs allow inference algorithms such as 
VE that are efficient in many cases 
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Next Time

• Machine Learning!


