CSE 473

Chapter 14
Bayesian Networks

What are Bayesian networks?

+ Simple, graphical notation for conditional independence
assertions

+ Allows compact specification of full joint distributions

+ Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link = "directly influences")
a conditional distribution for each node given its
parents:
P (X; | Parents (X))

+ For discrete variables, conditional distribution =
conditional probability table (CPT) = distribution over
X; for each combination of parent values
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Back at the Dentist's

+ Topology of network encodes conditional independence

assertions:
Toothache @

Weather is independent of the other variables

Toothache and Catch are conditionally independent of
each other given Cavity
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Example 2: Burglars and Earthquakes

* You are at a "Done with 473" party at a friend's.

* Neighbor John calls to say your home alarm is ringing
(but neighbor Mary doesn't).

+ Sometimes your alarm is set of f by minor earthquakes.

* Question: Is your home being burglarized?

* Variables: Burglary, Earthguake, Alarm, JohnCalls,
Marycalls

* Network topology reflects "causal" knowledge:
A burglar can set the alarm of f
An earthquake can set the alarm of f
The alarm can cause Mary to call
The alarm can cause John to call
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Burglars and Earthquakes
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Compact Representation of Probabilities in
Bayesian Networks

+ A CPT for Boolean X;with & Boolean parents has 2 rows
for the combinations of parent values

©
+ Each row requires 1 number p for X, = frue
g ®

(the number for X;= falseis just 1-p)

+ If each variable has no more than 4 parents, the
complete network requires O(n - 2¥) numbers
Ie., grows linearly with n, vs. O@2") for full joint distribution

+ For our network, 1+1+4+2+2 = 10 numbers (vs. 2°-1 = 31)
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Semantics

Full joint distribution is defined as product of
local conditional distributions:

P (X, .. X,)=1",P(X | Parents(X))

eqg.. P(jOmOall-b[-e)
=P(/a)P(m/a)P (a]-b -e)P (~b)P (=e)

®
o
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Constructing Bayesian networks

* 1. Choose an ordering of variables X, .. X,
- 2.For/=1ton
add X, to the network
select parents from X, ... ,.X;;such that
P (X; | Parents(X) = P (X; | X, ... X1

This choice of parents guarantees:

PXy .. X)=PX, | X, X, )P Xy s X, t)
P Xy X )P Xy s | Xy X )P Xy o, X,
=mh,P(X;| X, ... X.,)(chain rule)
=1, P (X;/ Parents(X;)) (by construction)
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Example

- Suppose we choose the ordering M, J, A, B, £

P(T | M) =P(T)?
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Example

+ Suppose we choose the ordering M, J, A, B, £

P(T | M) = P(7)? No
PA [T M) =PA[ITRPATI,M)=PAP
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Example

« Suppose we choose the ordering M, J, A, B, £

=
‘@
>
P(T | M) = P(7)? No
PA[T, M)=PA]JTPNo PA/]JT, M)=P(AP No
PB[A J, M)=PBR
PB| A J M)=PB|AP
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Example

* Suppose we choose the ordering M, J, A, B, £

NP =

Burglary
Earthquake

P(T | M) = P(T)?No

PA]T M)=P(A]TPNo PA[JT, M)=P(AR No
PB|A J M)=PBP No

PBJA J M)=PB]AP Yes

PE|B AT M =PE]AP

PE|B A T M=PE]A BP
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Example
* Suppose we choose the ordering M, J, A, B, £

Earthquake

P(T | M) = P(7)?No

P(A [T, M)=P(A [ TP No P(A|J, M)=PAP No
PB[A, J,M)=PBR No

PB|A J,M)=PB AP Yes

PE|B A,J,M)=PE]APNo

PEIB A T M)=PE]A BPYes
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Example contd.

Causal

Non-causal

Vs.

Burglary

+ Deciding conditional independence is hard in non-
causal directions

+ Causal models and conditional independence seem
hardwired for humans! (recent Cog Sci research)

* Non-causal network is less compact: 1+2 +4 + 2 +
4 = 13 numbers (vs. 1+1+4+2+2 = 10 numbers)
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Lesson: Add nodes
representing "root
causes” first, then the
variables they
influence, and so on.
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Keep it causal,
baby!
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Probabilistic Inference in BNs

* The graphical independence representation
yields efficient inference schemes

*We generally want to compute

P(X/E) where Eis evidence from sensory
measurements etc. (known values for variables)

Sometimes, may want to compute just A(X)
*One simple algorithm:
variable elimination (VE)
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P(B | J=true, M=true)

Earthquake Burglary

/
<@ ED

P(bljm)=a 2 P(b,jm,e,a)

P(B | J=true, M=true)

Earthquake Burglary

/
@& E&b

P(b|j,m) = aP(b) 2P(e) 2P(a|b,e)P(jla)P(m|a)
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Structure of Computation

Plulb,e) P(—ulb,e) Pualbme)
.05 .06

i P(jla) P(jlma) P(jlw) P(jlma)
£ 90 05 : 05
{ P(mla) P(ml—a) P(mla) P(ml—a)
.70 ol 70 ol

Repea’red computations = use dynamic programming?
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Variable Elimination

- A factoris a function from some set of
variables to a specific value: e.q., f(E,A,Mary)

CPTs are factors, e.g., A(A/E,B) function of A,EB

* VE works by eliminating all variables in turn until
there is a factor with only query variable

- To eliminate a variable:

1. joinall factors containing that variable (like
DBs/SQL), multiplying probabilities
2. sum out the influence of the variable on new factor
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Example of VE: P(J)

P(J)

= nse PUMA,BE) Certna)
= 5y a5 PWIAP(MIA) P(B)P(AIB.E)P(E)

- 3, PJIA) =, P(MIA) Z,P(B) ZP(AIB,E)P(E) arn

- 3, PJIA) 3, P(MIA) Z,P(B) 11(A,B) /

= 3, P(N1IA) Z,P(MIA) f2(A) @ (m)
- 3, PUIA) 13(A)

- f4(J)
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Other Inference Algorithms

* Direct Sampling:
Repeat N times:
* Use random number generator to generate sample values
for each node
+ Start with nodes with no parents
+ Condition on sampled parent values for other nodes
Count frequencies of samples to get an
approximation to joint distribution

* Other variants: Rejection sampling, likelihood weighting,
Gibbs sampling and other MCMC methods (see text)

+ Belief Propagation: A "message passing” algorithm for
approximating P(X|evidence) for each node variable X

* Variational Methods: Approximate inference using
distributions that are more tractable than original ones
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Summary

+ Bayesian networks provide a natural way
to represent conditional independence

* Network topology + CPTs = compact
representation of joint distribution

* Generally easy for domain experts to
construct

+ BNs allow inference algorithms such as
VE that are efficient in many cases
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Next Time

* Machine Learning!
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