CSE 473

What are Bayesian networks?

- Simple, graphical notation for conditional independence assertions
- Allows compact specification of full joint distributions
- Syntax:
a set of nodes, one per random variable a directed, acyclic graph (link \approx "directly influences") a conditional distribution for each node given its parents:
$P\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$
- For discrete variables, conditional distribution = conditional probability table (CPT) = distribution over X_{i} for each combination of parent values

Back at the Dentist's

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent of each other given Cavity

Example 2: Burglars and Earthquakes

- You are at a "Done with 473" party at a friend's.
- Neighbor John calls to say your home alarm is ringing (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:

A burglar can set the alarm off
An earthquake can set the alarm off
The alarm can cause Mary to call
The alarm can cause John to call

Burglars and Earthquakes

Compact Representation of Probabilities in Bayesian Networks

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires 1 number p for $X_{i}=$ true (the number for $X_{i}=$ false is just 1-p)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for full joint distribution
- For our network, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Semantics

Full joint distribution is defined as product of local conditional distributions:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
$$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_{1}, \ldots, X_{n}
- 2. For $i=1$ to n add X_{i} to the network select parents from X_{1}, \ldots, X_{i-1} such that $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)$

This choice of parents guarantees:

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{n} \mid X_{1}, \ldots, x_{n-1}\right) P\left(X_{1}, \ldots, X_{n-1}\right) \\
& =P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) P\left(x_{n-1} \mid x_{1}, \ldots, x_{n-2}\right) P\left(x_{1}, \ldots, x_{n-2}\right) \\
& =\pi_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \text { (chain rule) } \\
& =\pi_{i=1}^{n} \mathrm{P}\left(X_{i} / \operatorname{Parents}\left(X_{i}\right)\right) \text { (by construction) }
\end{aligned}
$$

Example

- Suppose we choose the ordering M, J, A, B, E MaryCalls

JohnCalls
$P(J / M)=P(J) ?$

Example

- Suppose we choose the ordering M, J, A, B, E

$P(J / M)=P(J) ?$ No
$P(A \mid J, M)=P(A / J) P P(A / J, M)=P(A)$?

Example

- Suppose we choose the ordering M, J, A, B, E

$P(J / M)=P(J) ?$ No
$P(A \mid J, M)=P(A \mid J P$ № $P(A / J, M)=P(A)$? No $P(B \mid A, J, M)=P(B)$
$P(B / A, J, M)=P(B \mid A)$?

Example

- Suppose we choose the ordering M, J, A, B, E

Earthquake
$P(J / M)=P(J) ?$ No
$P(A / J, M)=P(A / J)$ No $P(A / J, M)=P(A) P$ No
$P(B \mid A, J, M)=P(B)$ №
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(E \mid B, A, J, M)=P(E \mid A)$?
$P(E \mid B, A, J, M)=P(E \mid A, B)$?

Example

- Suppose we choose the ordering M, J, A, B, E

$P(J / M)=P(J) ?$ No
$P(A \mid J, M)=P(A \mid J)$? No $P(A / J, M)=P(A)$? No
$P(B \mid A, J, M)=P(B)$ №
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(E \mid B, A, J, M)=P(E \mid A)$? No
$P(E \mid B, A, J, M)=P(E \mid A, B)$? Yes

- Deciding conditional independence is hard in noncausal directions
- Causal models and conditional independence seem hardwired for humans! (recent Cog Sci research)
- Non-causal network is less compact: $1+2+4+2+$ $4=13$ numbers (vs. $1+1+4+2+2=10$ numbers)

Probabilistic Inference in BNs

-The graphical independence representation yields efficient inference schemes
-We generally want to compute $P(X / E)$ where E is evidence from sensory measurements etc. (known values for variables)
Sometimes, may want to compute just $P(X)$

- One simple algorithm:
variable elimination (VE)

$P(B \mid J=$ true, $M=$ true $)$

$P(B \mid J=t r u e, M=t r u e)$

$$
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

Repeated computations \Rightarrow use dynamic programming?

Variable Elimination

- A factor is a function from some set of variables to a specific value: e.g., $f(E, A$, Mary $)$ CPTs are factors, e.g., $P(A / E, B)$ function of A, E, B
- VE works by eliminating all variables in turn until there is a factor with only query variable
- To eliminate a variable:

1. join all factors containing that variable (like DBs/SQL), multiplying probabilities
2. sum out the influence of the variable on new factor

Example of VE: $\mathrm{P}(\mathrm{J})$

$$
\begin{aligned}
& P(J) \\
& =\Sigma_{M, A, B, E} P(J, M, A, B, E) \\
& =\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B) \\
& =\Sigma_{A} P(N 1 \mid A) \Sigma_{M} P(M \mid A) f 2(A) \\
& =\Sigma_{A} P(J \mid A) f 3(A) \\
& =f 4(J)
\end{aligned}
$$

Other Inference Algorithms

- Direct Sampling:

Repeat N times:

- Use random number generator to generate sample values for each node
- Start with nodes with no parents
- Condition on sampled parent values for other nodes

Count frequencies of samples to get an approximation to joint distribution

- Other variants: Rejection sampling, likelihood weighting, Gibbs sampling and other MCMC methods (see text)
- Belief Propagation: A "message passing" algorithm for approximating $P(X \mid$ evidence $)$ for each node variable X
- Variational Methods: Approximate inference using distributions that are more tractable than original ones

Summary

- Bayesian networks provide a natural way to represent conditional independence
- Network topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct
- BNs allow inference algorithms such as VE that are efficient in many cases

Next Time

- Machine Learning!

