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Recall: Learning Decision Trees

Example: When should I wait for a table at a restaurant?

Attributes (features) relevant to Wait? decision:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
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Example Decision tree
A decision tree for Wait? based on personal “rules of 
thumb” (this was used to generate input data):
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Input Data for Learning
• Past examples where I did/did not wait for a table:

• Classification of examples is positive (T) or negative (F)
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Decision Tree Learning
• Aim: find a small tree consistent with training examples
• Idea: (recursively) choose "most significant" attribute 
as root of (sub)tree
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Choosing an attribute to split on

• Idea: a good attribute should reduce uncertainty
 E.g., splits the examples into subsets that are (ideally) 
"all positive" or "all negative"

• Patrons? is a better choice
To wait or not to 
wait is still at 50%.
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How do we quantify 
uncertainty?
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Using information theory to quantify 
uncertainty

• Entropy measures the amount of 
uncertainty in a probability distribution

• Entropy (or Information Content) of an 
answer to a question with possible 
answers v1, … , vn:

I(P(v1), … , P(vn)) = i=1 -P(vi) log2 P(vi)
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Using information theory

• Imagine we have p examples with Wait = True 
(positive) and n examples with Wait = false 
(negative). 

• Our best estimate of the probabilities of Wait 
= true or false is given by:

• Hence the entropy of Wait is given by:
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• Idea: a good attribute should reduce 
uncertainty and result in “gain in information”

• How much information do we gain if we disclose 
the value of some attribute?

• Answer:

uncertainty before – uncertainty after

Choosing an attribute to split on
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Back at the Restaurant

Before choosing an attribute: 

Entropy = - 6/12 log(6/12) – 6/12 log(6/12) 

= - log(1/2) = log(2) = 1 bit

There is “1 bit of information to be discovered”
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Back at the Restaurant

If we choose Type: Go along branch “French”: we have 
entropy = 1 bit; similarly for the others.

Information gain = 1-1 = 0 along any branch

If we choose Patrons: 
In branch “None” and “Some”, entropy = 0 
For “Full”, entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92

Info gain = (1-0) or (1-0.64) bits > 0 in both cases
So choosing Patrons gains more information!
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Entropy across branches
• How do we combine entropy of 
different branches?
• Answer: Computed average  

entropy
• Weight entropies according to 
probabilities of branches
2/12 times we enter “None”, so 
weight for “None” = 1/6 

“Some” has weight: 4/12 = 1/3
“Full” has weight 6/12 = ½
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Information gain

• Information Gain (IG) or reduction in entropy from using 
attribute A:

• Choose the attribute with the largest IG

IG(A) = Entropy before – AvgEntropy after choosing A
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Information gain in our example

Patrons has the highest IG of all attributes
⇒ Chosen by the DTL algorithm as the root
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• Decision tree learned from the 12 examples:

• Substantially simpler than other tree
 more complex hypothesis not justified by small amount of data

Should I stay or should I go?
Learned Decision Tree
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Performance Measurement
How do we know that the learned tree h ≈ f ?
Answer: Try h on a new test set of examples

Learning curve = % correct on test set as a function of 
training set size
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Ensemble Learning

• Sometimes each learning technique yields 
a different hypothesis (or function)

• But no perfect hypothesis…

• Could we combine several imperfect 
hypotheses to get a better hypothesis?
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Example 1: Othello Project

Many brains better than one?
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Example 2

this line is one simple classifier saying that 
everything to the left is + and everything to the 
right is -

Combining 3 linear classifiers

⇒ More complex classifier
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• Analogies:
 Elections combine voters’ choices to pick a good 
candidate (hopefully)

 Committees combine experts’ opinions to make 
better decisions

 Students working together on Othello project

• Intuitions:
Individuals make mistakes but the “majority” may 
be less likely to (true for Othello? We shall see…)

 Individuals often have partial knowledge; a 
committee can pool expertise to make better 
decisions

Ensemble Learning: Motivation
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Technique 1: Bagging

• Combine hypotheses via majority voting
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Bagging: Analysis

Error probability went down from 0.1 to 0.01!
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Weighted Majority Voting

• In practice, hypotheses rarely independent

• Some hypotheses have less errors than 
others ⇒ all votes are not equal!

• Idea: Let’s take a weighted majority
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Technique 2: Boosting

• Most popular ensemble learning technique
 Computes a weighted majority of hypotheses
 Can “boost” performance of a “weak learner”

• Operates on a weighted training set
 Each training example (instance) has a “weight”
 Learning algorithm takes weight of input into account

• Idea: when an input is misclassified by a 
hypothesis, increase its weight so that the next 
hypothesis is more likely to classify it correctly
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Boosting Example with Decision Trees (DTs)

training case
correctly

classified

training case

has large weight

in this round

this DT has 

a strong vote.

Output of hfinal is weighted majority of outputs of h1,…,h4
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AdaBoost Algorithm
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AdaBoost Example

Original training set D1 : Equal weights to all training inputs
Goal: In round t, learn classifier ht that minimizes error with 
respect to weighted training set
ht maps input to True (+1) or False (-1)

Taken from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
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AdaBoost Example
ROUND 1

Misclassified Increase weights

z1 = 0.42
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AdaBoost Example

ROUND 2

z2 = 0.65
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AdaBoost Example

ROUND 3

z3 = 0.92
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AdaBoost Example

hfinal

sign(x) = +1 if x > 0 and -1 otherwise

© CSE AI Faculty 34

Next Time

• Classification using:
 Nearest Neighbors
 Neural Networks


