
1

CSE 473

Chapter 20

Machine Learning Algorithms:

Neural Networks

CSE 473

Chapter 20

Machine Learning Algorithms:

Neural Networks

© CSE AI Faculty 2

Recap: Neurons as “Threshold Units”

• Artificial neuron:
 m binary inputs (-1 or 1) and 1 output (-1 or 1)
 Synaptic weights wji

 Threshold µi

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x > 0 and -1 if x ≤ 0

)(ij

j

jii uwv µ−Θ= ∑

w1i

w2i

w3i

2

© CSE AI Faculty 3

“Perceptrons” for Classification

• Fancy name for a single layer “feed-
forward” network

• Uses artificial neurons (“units”) with binary
inputs and outputs

Single-layer

© CSE AI Faculty 4

Perceptrons and Classification
• Consider a single-layer perceptron

 Weighted sum forms a linear hyperplane

 Everything on one side of this hyperplane is
in class 1 (output = +1) and everything on
other side is class 2 (output = -1)

0=−∑ ij

j

jiuw µ

3

© CSE AI Faculty 5

Example: AND function
• Example: AND is linearly separable

Linear hyperplane

v

u1 u2

µ = 1.5
(1,1)

1

-1

1

-1
u1

u2

111

-11-1

-1

-1

-11

-1-1
u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

How do we learn the
appropriate weights given only
examples of (input,output)?

Idea: Change the weights to decrease
the error in ouput

4

© CSE AI Faculty 7

Perceptron Learning Rule

• Given input pair (u, vd) where vd ∈ {+1,-1} is
the desired output, adjust w and µ as follows:

1. Calculate current output v of neuron

2. Compute error signal e = (vd – v)

)()(µµ −Θ=−Θ= ∑ uw
T

j

j

juwv

© CSE AI Faculty 8

Perceptron Learning Rule
3. Change w and µ according to error:

If input is positive and error is positive,
then w not large enough ⇒ increase w

If input is positive and error is negative,
then w too large ⇒ decrease w

Similar reasoning for other cases yields:

)(

)(

vv

vv

d

d

−−→
−+→

εµµ
ε uww BABA with replace means →

εεεε is the “learning rate” (a small positive number,
e.g., 0.2)

5

What if we want to learn
continuous-valued functions?

Input

Output

© CSE AI Faculty 10

Function Approximation

• We want networks that can learn a function
 Network maps real-valued inputs to real-valued output

 Idea: Given data, minimize errors between network’s
output and desired output by changing weights

Continuous output values à Can’t

use binary threshold units anymore

To minimize errors, a differentiable

output function is desirable

6

© CSE AI Faculty 11

Sigmoidal Networks

Input nodes a
e

ag β−+
=

1

1
)(

a

Ψ(a)
1

The most common

activation function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0

and 1. The parameter β controls the slope.

g(a)

)(uw
T

g

u = (u1 u2 u3)
T

w

Outputv =

© CSE AI Faculty 12

Gradient-Descent Learning
(“Hill-Climbing”)

• Given training examples (um,dm) (m = 1,
…, N), define an error function (cost
function or “energy” function)

2)(
2

1
)(m

m

m
vdE −= ∑w

)(mTm
gv uw=where

7

© CSE AI Faculty 13

Gradient-Descent Learning
(“Hill-Climbing”)

• Would like to change w so that E(w) is
minimized
 Gradient Descent: Change w in
proportion to –dE/dw (why?)

mmTmm

m

m
mm

m

gvd
d

dv
vd

d

dE

d

dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

Derivative of sigmoid

© CSE AI Faculty 14

“Stochastic” Gradient Descent

• What if the inputs only arrive one-by-one?
• Stochastic gradient descent approximates

sum over all inputs with an “on-line” running
sum:

mmTmm
gvd

d

dE

d

dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as

the “delta rule”

or “LMS (least

mean square)

rule”
delta = error

8

© CSE AI Faculty 15

But wait….

• Delta rule tells us how to modify the connections from input
to output (one layer network)
 One layer networks are not that interesting
 (remember XOR?)

• What if we have multiple layers?

Delta rule can be used to

adapt these weights

How do we adapt these?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)
T; Desired = d

© CSE AI Faculty 16

Next Time

• Learning by Backpropagating
• Reinforcement Learning

