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Recap: Neurons as “Threshold Units”

• Artificial neuron:
 m binary inputs (-1 or 1) and 1 output (-1 or 1)
 Synaptic weights wji

 Threshold µi

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x > 0 and -1 if x ≤ 0

)( ij

j

jii uwv µ−Θ= ∑

w1i

w2i
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“Perceptrons” for Classification

• Fancy name for a single layer “feed-
forward” network

• Uses artificial neurons (“units”) with binary 
inputs and outputs

Single-layer
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Perceptrons and Classification
• Consider a single-layer perceptron

 Weighted sum forms a linear hyperplane

 Everything on one side of this hyperplane is 
in class 1 (output = +1) and everything on 
other side is class 2 (output = -1)
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Example: AND function
• Example: AND is linearly separable

Linear hyperplane

v

u1 u2

µ = 1.5
(1,1)

1

-1

1

-1
u1

u2

111

-11-1

-1

-1

-11

-1-1
u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

How do we learn the 
appropriate weights given only 
examples of (input,output)?

Idea: Change the weights to decrease 
the error in ouput
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Perceptron Learning Rule

• Given input pair (u, vd) where vd ∈ {+1,-1} is 
the desired output, adjust w and µ as follows:

1. Calculate current output v of neuron

2. Compute error signal e = (vd – v) 

)()( µµ −Θ=−Θ= ∑ uw
T

j

j
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Perceptron Learning Rule
3.  Change w and µ according to error:

If input is positive and error is positive, 
then w not large enough ⇒ increase w

If input is positive and error is negative, 
then w too large ⇒ decrease w

Similar reasoning for other cases yields:
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ε uww BABA  with  replace means  →

εεεε is the “learning rate” (a small positive number, 
e.g., 0.2)
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What if we want to learn 
continuous-valued functions?

Input

Output
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Function Approximation

• We want networks that can learn a function
 Network maps real-valued inputs to real-valued output

 Idea: Given data, minimize errors between network’s 
output and desired output by changing weights 

Continuous output values à Can’t 

use binary threshold units anymore

To minimize errors, a differentiable 

output function is desirable
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Sigmoidal Networks

Input nodes a
e

ag β−+
=

1

1
)(

a

Ψ(a)
1

The most common

activation function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0 

and 1. The parameter β controls the slope.

g(a)

)( uw
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u = (u1 u2 u3)
T

w

Outputv =
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Gradient-Descent Learning 
(“Hill-Climbing”)

• Given training examples (um,dm) (m = 1, 
…, N), define an error function (cost 
function or “energy” function)
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Gradient-Descent Learning 
(“Hill-Climbing”)

• Would like to change w so that E(w) is 
minimized
 Gradient Descent: Change w in 
proportion to –dE/dw (why?)
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Derivative of sigmoid
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“Stochastic” Gradient Descent

• What if the inputs only arrive one-by-one?
• Stochastic gradient descent approximates 

sum over all inputs with an “on-line” running 
sum:
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Also known as 

the “delta rule”

or “LMS (least 

mean square) 

rule”
delta = error
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But wait….

• Delta rule tells us how to modify the connections from input 
to output (one layer network)
 One layer networks are not that interesting 
 (remember XOR?)

• What if we have multiple layers?

Delta rule can be used to 

adapt these weights

How do we adapt these?

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)
T; Desired = d
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Next Time

• Learning by Backpropagating
• Reinforcement Learning


