CSE 473
Chapter 20

Machine Learning Algorithms:
Neural Networks

Recap: Neurons as "Threshold Units"

» Artificial neuron:
m binary inputs (-1 or 1) and 1 output (-1 or 1)

Synaptic weights w; b= @(ZW“”‘ - 1)
i JiJ t
J

Threshold y;
Ox)=1lifx>0and-1ifx<0

Wii Weighted Sum Threshold

Inputs u; M>\ Output
—— putv;

(-1 or+l) W Z (-1 or+1)
3i

K

© CSE AT Faculty

"Perceptrons” for Classification

» Fancy name for a single layer “feed-
forward" network

» Uses artificial neurons (“units”) with binary
inputs and outputs

Single-layer

AN

© CSE AT Faculty

Perceptrons and Classification

« Consider a single-layer perceptron
Weighted sum forms a /inear hyperplane

D witt; =4 =0
j

Everything on one side of this hyperplane is
in class 1 (output = +1) and everything on
other side is class 2 (output = -1)

© CSE AT Faculty

Example: AND function

+ Example: AND is linearly separable

U,
]

(1.1

1 °
L

/_\ Linear hyperplane

v=1iff uy;+u,-15>0

© CSE AT Faculty

How do we learn the

appropriate weights given only
examples of (input,output)?

Idea: Change the weights to decrease

the error in ouput

Perceptron Learning Rule

Given input pair (u, vd) where vd 00 {+1,-1} is
the desired output, adjust w and p as follows:

1. Calculate current output v of neuron
v=00 wu, — 1) =0(wu-)
J

2. Compute error signal e = (vd - v)

© CSE AT Faculty

Perceptron Learning Rule

3. Change w and p according to error:
If input is positive and error is positive,
then w not large enough = increase w
If input is positive and error is negative,
then w too large = decrease w

Similar reasoning for other cases yields:
W WHeW' —VU A Bmeans replace A with B
M- H—EW' =)

£is the "learning rate” (a small positive number,
e.g., 0.2)

© CSE AT Faculty

What if we want to learn
continuous-valued functions?

Output fix

Input

et !

Function Approximation

+ We want networks that can learn a function
Network maps real-valued inputs fo real-valued output

Idea: Given data, minimize errors between network’s
output and desired output by changing weights

Output

Continuous output values Can’t
use binary threshold units anymore

To minimize errors, a differentiable
output function is desirable

© CSE AT Faculty 10

Sigmoidal Networks

The most common
activation function:

v= g(w'u) Output Sigmoid function:
w 1
a) =
Input nodes 8(a) 1+e ™

u=(u u, uy’]&

a

Non-linear “squashing” function: Squashes input to be between 0
and 1. The parameter 3 controls the slope.

© CSE AT Faculty

11

Gradient-Descent Learning
("Hill-Climbing")

» Given training examples (u”,a") (m = 1,
.., N), define an error function (cost
function or “energy" function)

E(w) :%Z(d’" —y™)?

where V" = g(w'u™)

© CSE AT Faculty

12

Gradient-Descent Learning
("Hill-Climbing")

* Would like to change w so that Aw) is
minimized
Gradient Descent: Change w in
proportion fo -d&/dw (why?)

dE
W > W—&—
dw
dE dav”
- — dm_vm - dm_vm IWTum um
- ;()dw ;()8 ()

I

Derivative of sigmoid

© CSE AT Faculty

"Stochastic” Gradient Descent

* What if the inputs only arrive one-by-one?

+ Stochastic gradient descent approximates
sum over all inputs with an "on-line" running
sum:

dE,

v Also known as
dE [< tX)
—L=—d" -v")g'(Wu"u" the“ delta rule
aw or “LMS (least

delta = error mean square)

rule”

© CSE AT Faculty 14

But wait....

Delta rule tells us how to modify the connections from input
to output (one layer network)

One layer networks are not that interesting
(remember XOR?)
What if we have multiple layers?

Output v= (v, v, ... v))T; Desired =d

. Delta rule can be used to
adapt these weights

._— How do we adapt these?
Inputu =(u, u, ... u’

© CSE AL Faculty 15

Next Time

* Learning by Backpropagating
- Reinforcement Learning

© CSE AT Faculty 16

