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The Reinforcement Learning 
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Why reinforcement learning?

Programming an agent to drive a car or fly a 
helicopter is very hard!

Can an agent learn to drive or fly 
through positive/negative rewards?
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Why reinforcement learning?

Can an agent learn to win at board games 
through rewards?

Win = large positive reward, Lose = negative
Learn evaluation function for different board positions?

Play games against itself?
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Why reinforcement learning?

Humans and animals learn through rewards 
– Reinforcement learning as a model of brain function?

Pavlov’s dog
Training: Bell ⇒ Food

After: Bell ⇒ Salivate
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Toy Example: Agent in a Maze
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Reward

Punishment

States = Maze locations (1,1), (1,2),…
Actions = Move forward, left, right, back
Rewards = +10 at (3,4), -10 at (2,4)

-1 at others (cost of moving)
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Actions might be noisy

• An action may not always succeed
 E.g. 0.9 probability of moving forward, 0.1 
probability divided equally among other 
neighboring locations

• Characterized by transition probabilities:
P(next state | current state, action)
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Goal: Learn a “Policy”
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Policy = for each state, what is the best 
action that maximizes my expected reward?
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Goal: Learn a “Policy”
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The Optimal Policy

A central problem in all these 
cases is learning to predict 

future reward
How do we do it?

Can we use supervised learning??
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Predicting Delayed Rewards

• Time: 0 ≤ t ≤ T with input u(t) and reward 
r(t) (possibly 0) at each time step t

• Key Idea: Make the output v(t) of supervised 
learner predict total expected future 
reward starting from time t
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Learning to Predict Delayed Rewards

• Use a set of modifiable weights w(t) and 
predict based on all past inputs u(t):

• Would like to find w(τ) that minimize:
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(Can we minimize this using 

gradient descent and delta rule?)

(Linear neural network)

Yes, BUT…not yet available are future rewards
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Temporal Difference (TD) Learning

• Key Idea: Rewrite squared error to get rid 
of future terms:
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Temporal Difference (TD) Learning

• TD Learning:
For each time step t, do:
For all τ (0 ≤ τ ≤ t), do:
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Expected future reward Prediction
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Temporal Difference Learning in the Brain?

Activity of a Dopaminergic cell in Ventral Tegmental Area

Before Training

After Training

Reward Prediction error

No error
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Selecting Actions when Reward is Delayed

States: A, B, or C

Possible actions at 

any state: Left (L) 

or Right (R)

If you randomly 

choose to go L or 

R (random 

“policy”), what 

is the value v of 

each state?

Can we learn the optimal policy for 
this maze?
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Policy Evaluation

For random policy:

Can learn this using 

TD learning:
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(u,a) → u’
Use output v(u) = w(u)

(Location, action) → new location
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Maze Value Learning for Random Policy
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Once I know the values, I can pick the 

action that leads to the higher valued state!
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Selecting Actions based on Values

Values act as 

surrogate immediate 

rewards ⇒ Locally 

optimal choice leads 

to globally optimal 

policy

Related to Dynamic 

Programming

v(B) = 2.5 v(C) =1
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Q learning

Simple method for action selection based on action values 
(or Q values) Q(u,a) where u is a state and a is an action

1. Let u be the current state. Select an action a according to:

2. Execute a and record new state u’ and reward r. Update 
Q:

3. Repeat until an end state is reached

∑
=

'

))',(exp(

)),(exp(
)(

a

auQ

auQ
aP

β
β

)),()','(max(),(),( ' auQauQrauQauQ a −++→ ε



11

© CSE AI Faculty 21

Reinforcement Learning Applications

Example: Flying a helicoptor via 
reinforcement learning (videos)
(work of Andrew Ng, Stanford) 

http://ai.stanford.edu/~ang/


