CSE 473
Chapter 3
Problem Solving using Search

“First, they do an on-line search”

© CSE AI Faculty

Example: The 8-puzzle

4 | =—p (4|56

6

Example: Route Planning

 Nanaimsean e

Sgolingranl At e

IS

=

Al

pEveren

{ =
Al fagetsiue
Lo

a2

Pacific o,,
Sy

Forlanc i
| Milamaok The Dales
Oregon Oty

Fagaras

Example: N Queens

BEEE]

4 Queens

Example: N Queens

4 Queens

State-Space Search Problems

General problem:
Given a start state, find a path to a goal state

* Can test if a state is a goal

* Given a state, can generate its successor states
Variants:

* Find any path vs. a least-cost path

* Goal is completely specified, task is just to find the path

— Route planning

* Path doesn’t matter, only finding the goal state
— 8 puzzle

Tree Representation of 8-Puzzle Problem Space

1123
8 4
7/6|5
1 3 112(3 112|3 112|3
8|24 84 8|6|4 8|4
7/6|5 7/6|5 7 5 7|/6|5
13 13 112 112|3 112|3 112|3 2|3 112|3
8|24 8124 8143 8/4|5 8|6|4 8/64 1184 7|84
7/6|5 7|6|5 7|6|5 7|6 7|5 7|5 7|6|5 6|5

n
~
™
[A*]
[+2]
=~
w
®
=~
[#)]
[+2]
=~
2]
[+2]
-
®
=~
-
®
=~

I Implementation: general tree search I

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT{MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

I Implementation: general tree search |

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure

node < REMOVE-FRONT(fringe)
if GOAL-TEST([problem] applied to STATE(node) succeeds return node

fringe < INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors + the empty set
for each action, result in SUCCESSOR-FN[problem](STATE[node]) do

s4—a new NODE
PARENT-NODE[s] - node; ACTION(s] < action; STATE[s] ¢ result

PATH-COST[s] - PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] ¢+~ DEPTH[node] + 1
add s to successors

return successors

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action
A

State Node depth =8

g=6

= State

-0 -]

] -]

2]

1

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(z)

States do not have parents, children, depth, or path cost!
parent, action
A

State E E Node depth =6
g=6

onos

BB

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.

1

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be o0)

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

Iterative deepening search

I Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

o)

14

|| Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
>@

15

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

16

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
(B) (O
pO ©® ® @

17

I Properties of breadth-first search |

Complete??

18

l Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time??

19

I Properties of breadth-first search |

Complete?? Yes (if b is finite)
Time?? 14+b+ 02 +b° + ...+ b0+ b — 1) = O(b?1), ie., exp. in d

Space??

20

I Properties of breadth-first search |

Complete?? Yes (if b is finite)
Time?? 14+b+b>+03+ ... + b+ b(b — 1) = O(b*1), ie., exp. in d
Space?? O(b?!) (keeps every node in memory)

Optimal??

21

I Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time?? 1+b+ 02+ +...+ b+ b(b — 1) = O(b1), ice., exp. in d
Space?? O(b%1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem for BFS.

Example: b = 10, 10,000 nodes/sec, 1KB/node

d=2% 1100 nodes, 0.11 secs, 1TMB

d=43z 111,100 nodes, 11 secs, 106 MB
d=8% 10°nodes, 31 hours, 1 TB

22

I Uniform-cost search |

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > ¢

Time?? # of nodes with g < cost of optimal solution, O(b/¢"/<1)
where C* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bI€7/¢])

Optimal?? Yes—nodes expanded in increasing order of g(n)

23

| Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

o8

24

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

25

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

26

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

27

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

28

| Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

30

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

31

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

32

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

33

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

34

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

35

I Properties of depth-first search |

Complete??

36

| Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time??

37

I Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

38

I Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

39

I Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

40

| Depth-limited search I

= depth-first search with depth limit [,
i.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE—DLS(MAKE—NODE(INITIAL—STATE[problem]),problem limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem](STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limat)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

41

| Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(DProblem) returns a solution

inputs: problem, a problem

I for depth+ 0 to co do
result < DEPTH- LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

42

I Iterative deepening search [=0 I

it=0 @D o

43

| Iterative deepening search [=1 |

it=1 HON @

44

Iterative deepening search [=2

45

46

| Properties of iterative deepening search |

Complete??

47

I Properties of iterative deepening search I

Complete?? Yes

Time??

48

I Properties of iterative deepening search |

Complete?? Yes
Time?? (d+ 1)B° +db' + (d — DV? + ... + b? = O(b)

Space??

49

| Properties of iterative deepening search I

Complete?? Yes
Time?? (d+ 1)b° +dbl + (d —)12 + ...+ b? = O(b%)
Space?? O(bd)

Optimal??

50

I Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)8° + db' + (d — 1)B* + ... + b4 = O(v?)
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.11)

51

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time pEt bIC/e] b v b?
Space bt bl /el bm bl bd
Optimal? Yes* Yes* No No Yes

52

Forwards vs. Backwards

Ll Craiova Eforie

Problem: Find the shortest route

Bidirectional Search

(W S
TS T

Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess

Repeated States

Failure to detect repeated states can turn a linear problem
into an exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set
called closed and only add new nodes to the fringe

55

Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed+— an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GoAL-TEsT[problem](STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then
add StaTE[node] to closed
fringe + INSERTALL(EXPAND(node, problem), fringe)

56

Can we do better?

All these methods are slow (blind)

Solution use problem-specific knowledge to
guide search (“heuristic function”)
“informed search” (next lecture)

57

