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Markov Networks

Markov Networks
 Undirected graphical models
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 Potential functions defined over cliques
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Markov Networks
 Undirected graphical models

 Log-linear model:

Weight of Feature i Feature i
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Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0)
And Graph encodes conditional independences
Then Distribution is product of potentials over

 cliques of graph

Inverse is also true.
(“Markov network = Gibbs distribution”)
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Markov Nets vs. Bayes Nets

Convert to MarkovMCMC, BP, etc.Inference

SomeSomeIndep. props.

D-separationGraph separationIndep. check

Z = 1Z = ?Partition func.
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Cond. probabilitiesArbitraryPotentials

Prod. potentialsProd. potentialsForm
Bayes NetsMarkov NetsProperty

Inference in Markov Networks
 Goal: compute marginals & conditionals of

 Exact inference is #P-complete
 Conditioning on Markov blanket is easy:

 Gibbs sampling exploits this
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MCMC: Gibbs Sampling

state ← random truth assignment
for i ← 1 to num-samples do
    for each variable x 
        sample x according to P(x|neighbors(x))
        state ← state with new value of x
P(F) ← fraction of states in which F is true

Other Inference Methods

 Belief propagation (sum-product)
 Mean field / Variational approximations
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MAP/MPE Inference

 Goal: Find most likely state of world given
evidence

)|(max xyP
y

Query Evidence

MAP Inference Algorithms

 Iterated conditional modes
 Simulated annealing
 Graph cuts
 Belief propagation (max-product)


