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Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential 
complexity, often better)

§ Inference is NP-hard in general

Part IV: Approximate Inference



Probabilistic Inference

§ Probabilistic inference: compute a desired probability 
from a probability model
§ Typically for a query variable given evidence
§ E.g., P(airport on time | no accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(airport on time | no accidents, 5 a.m.) = 0.95
§ P(airport on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated



§ Examples:

§ Posterior marginal probability
§ P(Q|e1,..,ek) 
§ E.g., what disease might I have?

§ Most likely explanation:
§ argmaxq,r,s P(Q=q,R=r,S=s|e1,..,ek)
§ E.g., what did he say?

Many Types of Inference

§ Inference: calculating some useful 
quantity from a probability model 
(joint probability distribution)



Inference by Enumeration
§ General case:

§ Evidence variables: E1, …, Ek = e1, …,ek
§ Query* variable: Q
§ Hidden variables: H1, …, Hr

X1, …, Xn

All variables

* Works fine with 
multiple query 
variables, too§ We want:

P(Q | e1, …,ek)

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H from model to 
get joint of Query and evidence

§ Step 3: Normalize

å
h1,…, hr

P(Q,h1,…, hr, e1,…,ek)P(Q,e1,…,ek) = 
X1, …, Xn

P(Q | e1,…,ek) = a P(Q,e1,…,ek)

Probability model  P(X1, …, Xn) is given



Inference by Enumeration in Bayes’ Nets

§ Reminder of inference by enumeration:
§ Any probability of interest can be computed by summing 

entries from the joint distribution: P(Q | e) = a åh P(Q , h, e)
§ Entries from the joint distribution can be obtained from a BN 

by multiplying the corresponding conditional probabilities

§ P(B | j, m) =  α åe,a P(B, e, a, j, m) 
=  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

§ So inference in Bayes nets means computing sums of 
products of numbers: sounds easy!

§ Problem: sums of exponentially many products!

B E

A

MJ



Can we do better?

§ Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
§ 16 multiplies, 7 adds
§ Lots of repeated subexpressions!

§ Rewrite as (u+v)(w+x)(y+z)
§ 2 multiplies, 3 adds

§ åe,aP(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ = P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(¬e)P(a|B,¬e)P(j|a)P(m|a)

+ P(B)P(e)P(¬a|B,e)P(j|¬a)P(m|¬a) + P(B)P(¬e)P(¬a|B,¬e)P(j|¬a)P(m|¬a)
Lots of repeated subexpressions!



Variable elimination: The basic ideas

§ Move summations inwards as far as possible
§ P(B | j, m) =  α åe,aP(B) P(e) P(a|B,e) P(j|a) P(m|a)

=  α P(B) åe P(e) åa P(a|B,e) P(j|a) P(m|a)

§ Do the calculation from the inside out
§ I.e., sum over a first, then sum over e
§ Problem: P(a|B,e) isn’t a single number, it’s a bunch of different 

numbers depending on the values of B and e
§ Solution: use arrays of numbers (of various dimensions) with 

appropriate operations on them
§ These are called factors



Factor Zoo



Factor Zoo I

§ Joint distribution: P(X,Y)
§ Entries P(x,y) for all x, y
§ |X|x|Y| matrix
§ Sums to 1

§ Projected joint: P(x,Y)
§ A slice of the joint distribution
§ Entries P(x,y) for one x, all y
§ |Y|-element vector
§ Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J)

Number of variables (capitals) = dimensionality of the table

A \ J true false

true 0.09 0.01



Factor Zoo II

§ Single conditional: P(Y | x)
§ Entries P(y | x) for fixed x, all y
§ Sums to 1

§ Family of conditionals: 
P(X |Y)
§ Multiple conditionals
§ Entries P(x | y) for all x, y
§ Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)
} - P(J|¬a)



Operation 1: Pointwise product

§ First basic operation: pointwise product of factors 
(similar to a database join, not matrix multiply!)
§ New factor has union of variables of the two original factors
§ Each entry is the product of the corresponding entries from 

the original factors

§ Example: P(A) x P(J|A) =  P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =



Example: Making larger factors

§ Example: P(A,J)  x  P(A,M)  =  P(A,J,M)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

x =

P(A,M)
A \ M true false

true 0.07 0.03

false 0.009 0.891 A=true

A=false

P(A,J,M)



Example: Making larger factors

§ Example: P(U,V)  x  P(V,W) x  P(W,X)  =  P(U,V,W,X)

§ Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 
§ I.e., 300 numbers blows up to 10,000 numbers!

§ Factor blowup can make Variable Elimination very expensive



Operation 2: Summing out a variable

§ Second basic operation: summing out
(or eliminating) a variable from a factor
§ Shrinks a factor to a smaller one

§ Example: åj  P(A,J) = P(A,j) + P(A,¬j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J



Summing out from a product of factors

§ Project the factors each way first, then sum the products

§ Example: åa P(a|B,e) x P(j|a) x P(m|a)
= P(a|B,e) x P(j|a) x P(m|a) + 
P(¬a|B,e) x P(j|¬a) x P(m|¬a)



Variable Elimination



Variable Elimination Steps

§ Query: P(Q|E1=e1,.., Ek=ek) 

1. Start with initial factors:
§ Local CPTs (but instantiated by evidence)

2. While there are still hidden variables 
(not Q or evidence):
a) Pick a hidden variable Hj

b) Eliminate (sum out) Hj from the product of 
all factors mentioning Hj

3. Join all remaining factors and normalize
X α



Var. Elim: Example

Step 2 a): Choose A to eliminate

P(B)     P(E)     P(A|B,E) P(j|A)     P(m|A)

Query P(B | j,m) 

P(A|B,E)
P(j|A)
P(m|A)

P(j,m|B,E)

P(B)     P(E)     P(j,m|B,E)

initial
factors:

new
factors:

Step 2 b) join factors and sum out A



Var. Elim: Example

Normalize

Step 2 a): Choose E to eliminate

P(E)
P(j,m|B,E) P(j,m|B)

P(B)     P(E)     P(j,m|B,E)

Step 3: Finish with B

P(B)
P(j,m|B) P(j,m,B)

P(B)     P(j,m|B)

P(B | j,m)

new
factors:

new
factors:

Step 2 b) join factors and sum out E

Step 3  join factors and normalize

Done!



Var. Elim: Order matters

§ Order the terms Z, A, B C, D
§ P(D) =  α åz,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)

=  α åz P(z) åa P(a|z) åb P(b|z) åc P(c|z) P(D|z)
§ Largest factor has 2 variables (D,Z)

§ Order the terms A, B C, D, Z
§ P(D) =  α åa,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 

=  α åa åb åc åz P(a|z) P(b|z) P(c|z) P(D|z) P(z)
§ Largest factor has 4 variables (A,B,C,D)
§ In general, with n leaves, factor of size 2n in general dn

D

Z

A B C



Var. Elim.: Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor
§ (Space is the difficult part.)

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!



Bonus: Worst Case Complexity? 

§ Variables: W, X, Y, Z
§ Clauses:

1. C1 = W v X v Y
2. C2 = Y v Z v ¬ W
3. C3 = X v Y v ¬Z

§ Sentence S = C1 Ù C2 ÙC3
§ P(S) > 0 iff S is satisfiable

=> NP-hard
§ P(S) = K x 0.5n where K is the 

number of satisfying 
assignments for clauses
=> #P-hard

S

C1 C2 C3

¬
¬

W X Y Z

0.5 0.50.50.5



Bonus: Polytrees

§ A polytree is a directed graph with no 
undirected cycles
§ At most one undirected path b/w any two 

nodes
§ E.g. burglary network but not insurance 

network

§ For poly-trees the complexity of variable 
elimination is linear in the network size 
if you eliminate from the leaf towards 
the roots



Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

Part IV: Approximate Inference
§ Prior Sampling
§ Rejection Sampling
§ Likelihood Weighting
§ Gibbs Sampling



Sampling

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?
§ Often very fast to get a decent 

approximate answer

§ The algorithms are very simple and 
general (easy to apply to fancy models)

§ They require very little memory (O(n))
§ They can be applied to large models, 

whereas exact algorithms blow up



Sampling basics: discrete (categorical) distribution

§ To simulate a biased d-sided coin:

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
associating each outcome x with a 
P(x)-sized sub-interval of [0,1)

§ Example

§ If random() returns u = 0.83, 
then the sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

0.0 £ u < 0.6, ® C=red
0.6 £ u < 0.7, ® C=green
0.7 £ u < 1.0, ® C=blue

0.6 0.30.1



Sampling in Bayes Nets

§ Prior Sampling

§ Rejection Sampling

§ Likelihood Weighting

§ Gibbs Sampling



Prior Sampling



s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

c 0.5
¬c 0.5

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

Samples:

c, ¬s,    r, w
¬c,    s, ¬r, w

…

P(W | S,R)

P(S | C) P(R | C)

P(C)



Prior Sampling

§ For i=1, 2, …, n (in topological order)

§ Sample Xi from P(Xi | parents(Xi))

§ Return (x1, x2, …, xn)



Prior Sampling

§ This process generates samples with probability:
SPS(x1,…,xn) = 

…i.e. the Bayes’ net’s joint probability

§ Let the number of samples of an event be NPS(x1,…,xn)
§ Estimate from N samples is QN(x1,…,xn) = NPS(x1,…,xn)/N
§ Then limN®¥ QN(x1,…,xn)  =  limN®¥ NPS(x1,…,xn)/N

= SPS(x1,…,xn) 
= P(x1,…,xn) 

§ I.e., the sampling procedure is consistent

Õi P(xi | parents(Xi)) = P(x1,…,xn) SPS  = Sampleprior sampling



Example

§ We’ll get a bunch of samples from the Bayes’ net:
c, ¬s,    r,    w
c,    s,    r,    w

¬c,    s,    r, ¬w
c, ¬s,    r,    w

¬c, ¬s, ¬r,    w

§ If we want to know P(W)
§ We have counts <w:4, ¬w:1>
§ Normalize to get P(W) = <w:0.8, ¬w:0.2>
§ This will get closer to the true distribution with more samples
§ Can estimate anything else, too

§ E.g., for query P(C| r, w) use P(C| r, w) = α P(C, r, w)

S R

W

C



Example

§ Say we want to know P(W | s, ¬r)
§ We’ll get a bunch of samples from the Bayes’ net:

c, ¬s,    r,    w
c,    s,    r,    w

¬c,    s,    r, ¬w
c, ¬s,    r,    w

¬c, ¬s, ¬r,    w

§ What’s wrong?

S R

W

C



Rejection Sampling



c, ¬s,    r,    w
c,    s, ¬r

¬c,    s,    r, ¬w
c, ¬s, ¬r

¬c, ¬s,    r,    w

Rejection Sampling

§ A simple modification of prior sampling 
for conditional probabilities

§ Let’s say we want P(C| r, w)

§ Count the C outcomes, but ignore (reject) 
samples that don’t have R=true, W=true
§ This is called rejection sampling
§ It is also consistent for conditional 

probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
§ Input: evidence e1,..,ek
§ For i=1, 2, …, n

§ Sample Xi from P(Xi | parents(Xi))

§ If xi not consistent with evidence
§ Reject: Return, and no sample is generated in this cycle

§ Return (x1, x2, …, xn)



c, ¬s,    r,    w
c,    s, ¬r

¬c,    s,    r, ¬w
c, ¬s, ¬r

¬c, ¬s,    r,    w

Rejection Sampling

§ We want P(C| r, w)

§ What if we have to reject a lot of 
samples?

S R

W

C



Likelihood Weighting



§ Idea: fix evidence variables, sample the rest
§ Problem: sample distribution not consistent!

§ No longer sampling according to the CPT!

§ Solution: weight each sample by probability of 
evidence variables given parents

Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P(Shape|Color=blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

Likelihood Weighting: P(C, R| s, w)

c 0.5
¬c 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Samples:

, s,   , w

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

w = 1.0 x 0.1 x 0.99c r

random() = .425

random() = .722



s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

Likelihood Weighting: P(C, R| s, ¬w)

c 0.5
¬c 0.5

Samples:

, s,   , ¬w

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

w = 1.0 x 0.5 x 0.01¬c r

random() = .111

random() = .573



Likelihood Weighting
§ Input: evidence e1,..,ek
§ w = 1.0
§ for i=1, 2, …, n

§ if Xi is an evidence variable
§ xi = observed valuei for Xi

§ Set w = w * P(xi | parents(Xi))

§ else
§ Sample xi from P(Xi | parents(Xi))

§ return (x1, x2, …, xn), w



Likelihood Weighting
§ Sampling distribution if Z sampled and e fixed evidence

SWS(z,e) = Õj P(zj | parents(Zj)) 

§ Now, samples have weights

w(z,e) = Õk P(ek | parents(Ek)) 

§ Together, weighted sampling distribution is consistent

SWS(z,e) × w(z,e) =  Õj P(zj | parents(Zj)) Õk P(ek | parents(Ek))
= P(z,e) 

§ Likelihood weighting is an example of importance sampling
§ Would like to estimate some quantity based on samples from P
§ P is hard to sample from, so use Q instead
§ Weight each sample x by P(x)/Q(x)

Cloudy

R

C

S

W

SWS  = Sampleweighted sample



Likelihood Weighting

§ Likelihood weighting is good
§ All samples are used
§ The values of downstream variables are 

influenced by upstream evidence

§ Likelihood weighting still has weaknesses
§ The values of upstream variables are unaffected by 

downstream evidence
§ E.g., suppose evidence is a video of a traffic accident, query is 

likelihood of accident

§ With evidence in k leaf nodes, weights will be O(2-k)
§ Each will be very small!

§ With high probability, one lucky sample will have much 
larger weight than the others, dominating the result

§ We would like each variable to “see” all the 
evidence!

*dark red nodes are upstream evidence, weighted by probability
light pink nodes are hidden variables conditioned on evidence
lavender nodes are hidden variables conditioned on the sample
circled yellow node is the query variable
gold nodes are hidden variables weighted by query and evidence
dark blue nodes are downstream evidence



Gibbs Sampling

49



Markov Chain Monte Carlo

§ MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a 
very large state space
§ Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
§ Monte Carlo = a very expensive city in Monaco with a famous casino
§ Monte Carlo = an algorithm (usually based on sampling) that has some 

probability of producing an incorrect answer

§ MCMC = wander around for a bit, average what you see





Gibbs sampling

§ A particular kind of MCMC
§ States are complete assignments to all variables

§ (Recall local search. This is closely related to simulated annealing!)

§ Evidence variables remain fixed, other variables change
§ To generate the next state, pick a variable and sample a value for it 

conditioned on all the other variables:   Xi’ ~ P(Xi | x1,..,xi-1,xi+1,..,xn)
§ Will tend to move towards states of higher probability, but can go down too
§ In a Bayes net, P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

§ Theorem: Gibbs sampling is consistent*
Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

X ~ P(…) means X is drawn from distribution P(…)



How to do this?

§ Repeat many times
§ Sample a non-evidence variable  Xi from
P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

=   α P(Xi | parents (Xi))  Õj P(yj | parents(Yj))

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X



c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Sample C ~ P(C| s, r, ¬w)

c 0.5
¬c 0.5

P(C| s, r, ¬w)   

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

= α P(C) P(s | C) P(r | C)

= α <.5, .5> x <.1, .5> x <.8, .2> 
= α <.04, .05>
= <.44, .55>

random() = .522

Cloudy



c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

c 0.5
¬c 0.5

Your Turn: Sample R ~ P(R| c, ¬ s, w)

P(R| c, ¬s, w)   

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Wet Grass

Sprinkler

P(W | S,R)

P(S | C) P(R | C)

P(C)

= α P(w | R, ¬s) P(R | c)

= α x <.9, .01> x <.8, .2> 
= α <.72, .002>
= <.997, .003>

random() = .333

Cloudy



§ Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | r)

§ Step 1: Fix evidence
§ R = true

§ Step 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P(X | markov_blanket(X))

S r

W

C

S r

W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

Sample S ~ P(S | c, r, ¬w) Sample C ~ P(C | s, r) Sample W ~ P(W | s, r)



Car Insurance: P(Age | mc,lc,pc)

SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord

 0

 0.005

 0.01

 0.015

 0.02

 0  200000 400000 600000 800000  1x106

Er
ro

r

Number of samples

Likelihood weighting
Gibbs sampling



Gibbs sampling and MCMC in practice

§ The most commonly used method for large Bayes’ nets
§ See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

§ Can be compiled to run very fast
§ Eliminate all data structure references, just multiply and sample
§ ~100 million samples per second on a laptop

§ Can run asynchronously in parallel (one processor per variable)



Why does it work? (see R+N 13.4.2 for details)

§ Suppose we run the Markov chain for a long time and predict the 
probability of reaching any given state at time t: πt(x1,...,xn) or πt(x) 

§ Each Gibbs sampling step (pick a variable, resample its value) applied to a 
state x has a probability k(x’ | x) of reaching a next state x’

§ So πt+1(x’) = åx k(x’ | x) πt(x) or, in matrix/vector form πt+1 = Kπt

§ When the process is in equilibrium πt+1 = πt = π so Kπ = π
§ This has a unique* solution π = P(x1,...,xn | e1,...,ek)

§ If the transition model is ergodic (every state is reachable). Otherwise gets stuck

§ So for large enough t the next sample will be drawn from the true posterior
§ “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



Bayes Net Sampling Summary
§ Prior Sampling  P

§ Likelihood Weighting  P( Q | e)

§ Rejection Sampling  P( Q | e )

§ Gibbs Sampling  P( Q | e )


