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Learning
Chapter 18 and Parts of Chapter 20

• AI systems are complex and may have many 
parameters.

• It is impractical and often impossible to encode 
all the knowledge a system needs.

• Different types of data may require very different 
parameters.

• Instead of trying to hard code all the knowledge, 
it makes sense to learn it.
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Learning from Observations

• Supervised Learning – learn a function 

from a set of training examples which are 

preclassified feature vectors.

feature vector class

(shape,color)
(square, red) I

(square, blue) I

(circle, red) II

(circle blue) II

(triangle, red) I

(triangle, green) I

(ellipse, blue) II

(ellipse, red) II

Given a previously unseen

feature vector, what is the

rule that tells us if it is in

class I or class II?

(circle, green) ?

(triangle, blue) ?



Real Observations
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%Training set of Calenouria and Dorenouria

@DATA 

0,1,1,0,0,0,0,0,0,1,1,2,3,0,1,2,0,0,0,0,0,0,0,0,1,0,0,1,

0,2,0,0,0,0,1,1,1,0,1,8,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

3,3,4,0,2,1,0,1,1,1,0,0,0,0,1,0,0,1,1,cal 0,1,0,0,0,1,0,0,0,4,1,2

,2,0,1,0,0,0,0,0,1,0,0,3,0,2,0,0,1,1,0,0,1,0,0,0,1,0,1,6,1,8,2,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,2,0,5,0,0,0,0,0,0,0,1,3,0,0,0,0,

0,cal 

0,0,1,0,1,0,0,1,0,1,0,0,1,0,3,0,1,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,1,0,

2,0,2,0,1,8,0,5,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,3,0,0,2,1,1,

5,0,0,0,2,1,3,2,0,1,0,0,cal 0,0,0,0,0,0,0,0,2,0,0,1,2,0,1,1,0,0,0,1

,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,3,0,0,4,1,8,0,0,0,1,0,0,0,0,0,1,0,1

,0,1,0,0,0,0,0,0,4,2,0,2,1,1,2,1,1,0,0,0,0,2,0,0,2,2,cal 

...
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Learning from Observations

• Unsupervised Learning – No classes are 
given. The idea is to find patterns in the 
data. This generally involves clustering.

• Reinforcement Learning – learn from 
feedback after a decision is made.
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Topics to Cover

• Inductive Learning

– decision trees

– ensembles

– neural nets

– kernel machines

• Unsupervised Learning

– K-Means Clustering

– Expectation Maximization (EM) algorithm
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Decision Trees

• Theory is well-understood.

• Often used in pattern recognition 

problems.

• Has the nice property that you can easily 

understand the decision rule it has 

learned.
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Classic ML example: decision tree for

“Shall I play tennis today?”

from Tom Mitchell’s ML book



A Real Decision Tree (WEKA)
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part23 < 0.5

|   part29 < 3.5

|   |   part34 < 0.5

|   |   |   part8 < 2.5

|   |   |   |   part2 < 0.5

|   |   |   |   |   part63 < 3.5

|   |   |   |   |   |   part20 < 1.5 : dor (53/12) [25/8]

|   |   |   |   |   |   part20 >= 1.5

|   |   |   |   |   |   |   part37 < 2.5 : cal (6/0) [5/2]

|   |   |   |   |   |   |   part37 >= 2.5 : dor (3/1) [2/0]

|   |   |   |   |   part63 >= 3.5 : dor (14/0) [3/0]

|   |   |   |   part2 >= 0.5 : cal (21/8) [10/4]

|   |   |   part8 >= 2.5 : dor (14/0) [14/0]

|   |   part34 >= 0.5 : cal (38/12) [18/4]

|   part29 >= 3.5 : dor (32/0) [10/2]

part23 >= 0.5

|   part29 < 7.5 : cal (66/8) [35/12]

|   part29 >= 7.5

|   |   part24 < 5.5 : dor (9/0) [4/0]

|   |   part24 >= 5.5 : cal (4/0) [4/0]

Calenouria

Dorenouria
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Correctly Classified Instances         281               73.5602 %

Incorrectly Classified Instances       101               26.4398 %

Kappa statistic                                     0.4718

Mean absolute error                            0.3493

Root mean squared error                    0.4545

Relative absolute error                      69.973  %

Root relative squared error               90.7886 %

Total Number of Instances                382     

=== Detailed Accuracy By Class ===

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class

0.77         0.297       0.713        0.77       0.74            0.747         cal

0.703       0.23         0.761        0.703     0.731          0.747         dor

Wg Avg.   0.736       0.263       0.737        0.736     0.735          0.747

=== Confusion Matrix ===

a   b   <-- classified as

144  43 |   a = cal

58 137 |   b = dor

Precision = TP/(TP+FP)

Recall = TP/(TP+FN)

F-Measure = 2 x Precision x Recall

Precision + Recall

Evaluation



Properties of Decision Trees

• They divide the decision space into axis 

parallel rectangles and label each 

rectangle as one of the k classes.

• They can represent Boolean functions.

• They are variable size and deterministic.

• They can represent discrete or continuous 

parameters.

• They can be learned from training data.

10
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How do we choose the best attribute?

What should that attribute do for us?

Learning Algorithm for Decision Trees

Growtree(S)    /* Binary version */

if (y==0 for all (x,y) in S) return newleaf(0)

else if (y==1 for all (x,y) in S) return newleaf(1)

else

choose best attribute xj

S0 = (x,y) with xj = 0

S1 = (x,y) with xj = 1

return new node(xj, Growtree(S0), Growtree(S1))

end 
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Shall I play tennis today?

Which attribute should be selected?

witten&eibe

“training

data”
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Criterion for attribute selection

• Which is the best attribute?

– The one that will result in the smallest tree

– Heuristic: choose the attribute that produces 

the “purest” nodes

• Need a good measure of purity!

– Maximal when?

– Minimal when?
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Information Gain

Which test is more informative?
Split over whether 

Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether 
applicant is employed
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Information Gain

Impurity/Entropy (informal)

– Measures the level of impurity in a group 

of examples
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Impurity

Very impure group Less impure Minimum 
impurity
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Entropy: a common way to measure impurity

• Entropy = 

pi is the probability of class i

Compute it as the proportion of class i in the set.

• Entropy comes from information theory.  The 

higher the entropy the more the information 

content.

−
i

ii pp 2log

What does that mean for learning from examples?

16/30 are green circles; 14/30 are pink crosses

log2(16/30) =  -.9;       log2(14/30) =  -1.1 

Entropy = -(16/30)(-.9) –(14/30)(-1.1) = .99 
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2-Class Cases:

• What is the entropy of a group in which 
all examples belong to the same 
class?
– entropy = - 1 log21 = 0

• What is the entropy of a group with 
50% in either class?
– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 
impurity

Maximum
impurity

not a good training set for learning

good training set for learning
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Information Gain

• We want to determine which attribute in a given 
set of training feature vectors is most useful for 
discriminating between the classes to be 
learned.

• Information gain tells us how important a given 
attribute of the feature vectors is.

• We will use it to decide the ordering of attributes 
in the nodes of a decision tree.
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Calculating Information Gain
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Entropy-Based Automatic 

Decision Tree Construction

Node 1

What feature 

should be used?

What values?

Training Set S

x1=(f11,f12,…f1m)

x2=(f21,f22,    f2m)

.

.

xn=(fn1,f22,    f2m)

Quinlan suggested information gain in his ID3 system

and later the gain ratio, both based on entropy.
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Using Information Gain to Construct a 

Decision Tree

Attribute A

v1 vkv2

Full Training Set S

Set S 

repeat

recursively

till when?

S={sS | value(A)=v1}

Choose the attribute A

with highest information

gain for the full training

set at the root of the tree.
Construct child nodes

for each value of A.

Each has an associated

subset of vectors in

which A has a particular

value.

1

2

3
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Simple Example

X      Y      Z           C

1 1       1           I

1 1       0           I

0        0       1          II

1        0       0          II

How would you distinguish class I from class II?

Training Set: 3 features and 2 classes
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X      Y      Z           C

1 1       1           I

1 1       0           I

0        0       1          II

1        0       0          II

Eparent= 1 

Split on attribute X

I  I

II II

I I

II

II

GAIN = 1 – ( 3/4)(.9184) – (1/4)(0) = .3112

X=1

X=0
Echild2= 0

Echild1= -(1/3)log2(1/3)-(2/3)log2(2/3)

= .5284 + .39

=  .9184

If X is the best attribute,

this node would be further split.
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X      Y      Z           C

1 1       1           I

1 1       0           I

0        0       1          II

1        0       0          II

Eparent= 1 

Split on attribute Y

I  I

II II

I  I

II

II

GAIN = 1 –(1/2) 0 – (1/2)0 = 1; BEST ONE

Y=1

Y=0
Echild2= 0

Echild1= 0
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X      Y      Z           C

1 1       1           I

1 1       0           I

0        0       1          II

1        0       0          II

Eparent= 1 

Split on attribute Z

I  I

II II

I 

II

I

II

GAIN = 1 – ( 1/2)(1) – (1/2)(1) = 0    ie. NO GAIN; WORST

Z=1

Z=0
Echild2= 1

Echild1= 1
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feature vector class

(square, red) I

(square, blue) I

(circle, red) II

(circle blue) II

(triangle, red) I

(triangle, green) I

(ellipse, blue) II

(ellipse, red) II

Try the shape feature

I  I  I  I

II II II II

square                                  ellipse

circle                triangle 

I   I           II   II          I   I          II   II

Entropy?

Entropy?  Entropy?  Entropy?  Entropy?

GAIN?
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feature vector class

(square, red) I

(square, blue) I

(circle, red) II

(circle blue) II

(triangle, red) I

(triangle, green) I

(ellipse, blue) II

(ellipse, red) II

Try the color feature

I  I  I  I

II II II II

red      blue   green 

Entropy?

Entropy?  Entropy?  Entropy?  

GAIN?



Many-Valued Features

• Your features might have a large number 

of discrete values.

Example: pixels in an image have (R,G,B)

which are each integers between 0 and 255.

• Your features might have continuous 

values.

Example: from pixel values, we compute 

gradient magnitude, a continuous feature

29



One Solution to Both

• We often group the values into bins
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R

[0,32)   [32,64)     [64,96)     [96,128)  [128,160] [160,192) [192,224)  [224,255]

What if we want

it to be a binary

decision at each node?



Training and Testing

• Divide data into a training set and a 

separate testing set.

• Construct the decision tree using the 

training set only.

• Test the decision tree on the training set to 

see how it’s doing.

• Test the decision tree on the testing set to 

report its real performance.

31



Measuring Performance

• Given a test set of labeled feature vectors

e.g. (square,red) I

• Run each feature vector through the 

decision tree

• Suppose the decision tree says it belongs 

to class X and the real label is Y

• If (X=Y) that’s a correct classification

• If (X<>Y) that’s an error

32



Measuring Performance
• In a 2-class problem, where the classes are positive or 

negative (ie. for cancer)

– # true positives TP

– # true negatives TN

– # false positives FP

– # false negatives FN

• Accuracy = #correct / #total = (TP +TN) / (TP + TN + FP + FN)

• Precision = TP / (TP + FP)

How many of the ones you said were cancer really were cancer?

• Recall = TP / (TP + FN)

How many of the ones who had cancer did you call cancer?

33



More Measures

• F-Measure = 2*(Precision * Recall) / (Precision + Recall)

Gives us a single number to represent both precision and 

recall.

In medicine:

• Sensitivity = TP / (TP + FN) = Recall

The sensitivity of a test is the proportion of people who 

have a disease who test positive for it.

• Specificity = TN / (TN + FP) 

The specificity of a test is the number of people who DON’T 

have a disease who test negative for it. 

34



Measuring Performance

• For multi-class problems, we often look at 

the confusion matrix.

assigned class
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A    B   C   D   E   F   G

A

B

C

D

E

F

G

true

class

C(i,j) = number

of times (or

percentage)

class i is given

label j.



Overfitting

• Suppose the classifier h has error (1-

accuracy) of errortrain(h)

• And there is an alternate classifier 

(hypothesis) h’ that has errortrain(h’)

• What if errortrain(h) < errortrain(h’)

• But errorD(h) > errorD(h’) for full set D

• Then we say h overfits the training data

36
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What happens as the decision tree gets bigger and bigger?

Error on training data goes down, on testing data goes up



Reduced Error Pruning
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• Split data into training and validation sets

• Do until further pruning is harmful

1. Evaluate impact on validation set of pruning

each possible node (and its subtree)

2.  Greedily remove the one that most improves

validation set accuracy

• Then you need an additional independent testing set.
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The tree is pruned back to the red line where

it gives more accurate results on the test data.

On training data it looks great.

But that’s not the case for the test data.
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• The WEKA example with Calenouria and Dorenouria

I showed you used the REPTree classifier with 21 nodes.

• The classic decision tree for the same data had 65

nodes. 

• Performance was similar for our test set.

• Performance increased using a random forest of 10 

trees, each constructed with 7 random features.
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Decision Trees: Summary

• Representation=decision trees

• Bias=preference for small decision trees

• Search algorithm=none

• Heuristic function=information gain or

information content or others

• Overfitting and pruning

• Advantage is simplicity and easy conversion to rules.


