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Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005

Pedestrians ...,

More sophisticated methods: AP ~90%

(a) (b) (c) ()

(a) average gradient image over training examples

(b) each “pixel” shows max positive SVM weight in the block centered on that pixel
(c) same as (b) for negative SVM weights

(d) test image

(e) its R-HOG descriptor

(f) R-HOG descriptor weighted by positive SVM weights

(g) R-HOG descriptor weighted by negative SVM weights



Overview of HOG Method

1. Compute gradients in the region to be described
2. Put them in bins according to orientation

3. Group the cells into large blocks

4. Normalize each block

5. Train classifiers to decide if these are parts of a human



Details

* Gradients
[-101] and [-1 0 1]" were good enough filters.

* Cell Histograms
Each pixel within the cell casts a weighted vote for an
orientation-based histogram channel based on the values
found in the gradient computation. (9 channels worked)

* Blocks
Group the cells together into larger blocks, either R-HOG
blocks (rectangular) or C-HOG blocks (circular).



More Details

* Block Normalization

They tried 4 different kinds of normalization.
Let v be the block to be normalized and e be a small constant.
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1. Extract fixed-sized (64x128 pixel) window at each
position and scale

2. Compute HOG (histogram of gradient) features
within each window

3. Score the window with a linear SVM classifier

Perform non-maxima suppression to remove
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5
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* Histogram of gradient orientations

Orientation: 9 bins (for
unsigned angles)
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* Votes weighted by magnitude

 Bilinear interpolation between cells
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Histograms in 8x8

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5
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Training set
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Detection examples







Deformable Parts Model

* Takes the idea a little further

* Instead of one rigid HOG model, we have multiple
HOG models in a spatial arrangement

* One root part to find first and multiple other parts
In a tree structure.



The Idea

Articulated parts model
 Objectis configuration of parts
 Each partis detectable
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Images from Felzenszwalb



Deformable objects

Images from Caltech-256

Slide Credit: Duan Tran



Deformable objects

Images from D. Ramanan’s dataset

Slide Credit: Duan Tran



How to model spatial relations?

* Tree-shaped model
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Model Overview

detection root filter part filters deformation
models

Model has a root filter plus deformable parts



Hybrid template/parts model
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root filters part filters deformation
coarse resolution finer resolution models

Felzenszwalb et al. 2008



Pictorial Structures Model
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Results for person matching

27



Results for person matching
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EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

BMVC 2009



2012 State-of-the-art Detector:
Deformable Parts Model (DPM)

©ras,

 Lifetime
Achievemen

Strong low-level features based on HOG

Efficient matching algorithms for deformable part-based
models (pictorial structures)

Discriminative learning with latent variables (latent SVM)

Felzenszwalb et al., 2008, 2010, 2011, 2012



Why did gradient-based models work?

.

Average gradient image



Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset



Generic categories
Why doesn’t this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?
PASCAL Visual Object Categories (VOC) dataset



PASCAL VOC detection history

mean Average Precision (mAP)
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Part-based models & multiple

features (MKL)

mean Average Precision (mAP)
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Kitchen-sink approaches

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Region-based Convolutional
Networks (R-CNNs)

mean Average Precision (mAP)
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Standard Neural Networks




From NNs to Convolutional NNs

* Local connectivity

* Shared (“tied”) weights
* Multiple feature maps
* Pooling



Just-in-Time Information

e What is a convolution?

* |n signal processing, a correlation is an operation that
multiplies a small mask times a small piece of the
image. These are examples of such masks.

-1 0 | +1 +1 | +2 | +1

-2 0 | +2 0 0 0

-1 0 | +1 -1 1 -2 | -1
Gix Gy

* The strict definition of convolution flips the mask.

* But in computer vision, we call everything convolution.



Convolutional NNs

* Local connectivity

compare

* Each green unit is only connected to (3)
neighboring blue units

O
NN




Convolutional NNs

e Shared (“tied”) weights

e All green units share the same parameters w

' * Each green unit computes the same function,
Y1 @ but with a different input window




Convolutional NNs

* Convolution with 1-D filter: [ws, wy, wq |

e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window

000



Convolutional NNs

* Convolution with 1-D filter: [ws, wy, wq |

Wy Q

O W2 e All green units share the same parameters w

e Each green unit computes the same function,
but with a different input window



Convolutional NNs

* Convolution with 1-D filter: [ws, wy, wq |
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but with a different input window
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Convolutional NNs

* Convolution with 1-D filter: [ws, wy, wq |

O
O O
O ® All green units share the same parameters w
w
S ® . Each green unit computes the same function,
Q- but with a different input window
w



Convolutional NNs

* Convolution with 1-D filter: [ws, wy, wq |

O

O O

O ® All green units share the same parameters w

® ® . Each green unit computes the same function,
Wy O but with a different input window

@



Convolutional NNs

* Multiple feature maps

* All orange units compute the same function
but with a different input windows

* Orange and green units compute
different functions

Feature map 2
(array of orange
units)

Feature map 1
(array of green
units)



Convolutional NNs

* Pooling (max, average)

‘ —»@ * Pooling area: 2 units

.: % * Pooling stride: 2 units

. ﬂ% e Subsamples feature maps
O
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The key to SVMs

 |t’s all about the features

HOG features SVM weights
(+) (-)

(b) ‘ (g)

Histograms of Oriented Gradients for Human Detection,
Dalal and Triggs, CVPR 2005



Core idea of “deep learning”
* Input: the “raw” signal (image, waveform, ...)

* Features: hierarchy of features is learned from the
raw input



* If SVMs killed neural nets, how did they come back
(in computer vision)?



What’s new since the 1980s?

* More layers
* LeNet-3 and LeNet-5 had 3 and 5 learnable layers
e Current models have 8 — 20+

* “RelLU” non-linearities (Rectified Linear Unit) 96
* g(x) = max(0, x)
* Gradient doesn’t vanish X

* “Dropout” regularization
* Fast GPU implementations
* More data



What else? Object Proposals

. Slldmg wmdow based object detection

Feature
Extraction

Classificaiton

Iterate over window size, aspect
ratio, and location

* Object proposals
* Fast execution
* High recall with low # of candidate boxes

Object Feature Classificaiton

Proposal Extraction




I. Lawrence Zitnick and Piotr Dollar
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The number of contours wholly enclosed by a bounding box is indicative of
the likelihood of the box containing an object.




Ross’s Own System: Region CNNSs

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions




Competitive Results

VOC 2010 test | aero hike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train  tv [mAP
DPM 5 [20]F |49.2 53.8 131 153 355 3534 497 27.0 172 288 147 178 464 512 477 108 342 207 438 383|334
UVA [39] 56.2 424 153 126 21.8 493 368 461 129 321 300 365 435 520 329 153 411 318 470 448|351
Regionlets [+ 1] [65.0 48.9 259 246 245 361 545 51.2 17.0 289 302 358 402 557 435 143 439 326 540 459|397
SepDPM[15]F |61.4 534 256 252 355 517 506 508 193 338 268 404 483 544 471 148 387 350 528 431|404
R-CNN 67.1 641 467 320 305 564 572 659 270 473 409 eee 5TE 659 3536 267 565 381 528 50.2| 502
R-CNN BB TLE 658 530 3aR 359 507 600 609 279 506 414 TOO 620 690 581 205 504 M3 612 524|537

Table 1: Detection average precision (%) on VOO 20010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. 'DPM and SegDPM use conlext rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table % and also included in the tech report source uploaded to arXiv.org; see R—CHNN-ILSVRC2Z013-AF=s. txt). The red
ling marks the median AF, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotied as a green dot over the whiskers (best viewed digitally with zoom).



Top Regions for Six Object Classes

Figure 4: Top regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).




