Component: BusIface
Description: Stream interface between Microcontroller and Xilinx chip

Interface:

Microcontroller Interface:

STROBE
- “Clock”, generated by controller

Com[1:0]
– Command indicates type of transfer
Data[3:0]
- Data transferred on the bus
XBusy
- Signal to controller that the transaction

 has not completed yet

FPGA Interface:

Read
– Strobe requesting a read
Write
- Strobe requesting a write
Address[15:0] - Address to be written/read
ReadData[7:0] - Data being read for the controller
WriteData[7:0] – Data being written by controller
Busy
- Signal asserted by circuit if read/write

 is not being done yet

Operation:

This interface allows the microcontroller to write and read data to/from the FPGA. Since there are a limited number of pins, only 4 bits of address/data are transferred at a time, and several transfers on the data bus are needed to perform a single write or read transaction on the FPGA interface. It takes 4 transfers to send a 16 bit address on the bus and 2 transfers to send a byte of data. The interface collects the address and data from the controller and then executes a single read or write transaction to the FPGA.

A transfer on the bus is indicated by a change on the MSTROBE signal. That is, a rising or a falling edge on MSTROBE indicates a data is being transferred. The controller indicates kind of transfer is occurring using the COM signals as follows:

00 – NOP.
01 – Part of the address is being sent.
11 – A Read is being performed.
10 – A Write is a being performed.

The timing diagram on the next page shows how transactions take place on the bus. The part shows how a write followed by a read is performed using six cycles each. In the case of a read, the controller must tristate the data bus when issuing the read command. The Xilinx chip drives the data bus when it sees the Read command and tristates it for all other commands. Note that for this interface, the microcontroller is the master and the FPGA is the slave. The interface passes along the Busy signal to the controller as Xbusy. The controller must wait until the XBusy signal is off before continuing with the next transfer.

[image: image1.wmf]STROBE

COM

Data

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Write

D0

D1

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Read

D0

D1

STROBE

COM

Data

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Write

D0

D1

D0

D1

D0

D1

XBusy

XBusy

Write

Write

D0

D1

Write

Write

Read

note 1

Write

Write

Write

Write

note 1: When the Read command is asserted, the controller stops driving the bus and the FPGA starts driving the bus. The read data is not available until after Xbusy goes low.

The lower set of timing signals show how writes can be done more quickly using consecutive addresses. Each write (or read) without a new address causes the address to increment. This allows writes and reads to be done to consecutive addresses using only 2 data transfers each. The XBusy signal must be checked before each transfer.

After the microcontroller has done the transfers required for a read or write, the FPGA interface performs the read or write using a Read or Write strobe , providing the address along with the write data for writes. If the user circuit cannot perform the Read or Write when the strobe is asserted, then it must assert the Busy signal, and continue asserting it until the Read or Write has completed. For Writes, the Busy signal should be reset when the data is written. For Reads, the Busy signal can be reset the cycle before the read data is ready. The interface drives the bus as long as Write is asserted and tristates it otherwise.

For reads, the interface sends the data returned on the data bus to the microcontroller. Since a read can take a long time, the interface asserts the XBusy signal until the data is ready. The microcontroller must wait until XBusy drops before reading the data on the data bus. Writes can also take a long time, and thus XBusy must be checked after a Write before another transaction is started. Note that XBusy is asserted on the first Read cycle and on the second Write cycle. However, the general rule is to wait for XBusy to be cleared before proceeding with the next bus transfer.

� EMBED Visio.Drawing.5 ���

[image: image2.wmf]STROBE

COM

Data

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Write

D0

D1

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Read

D0

D1

STROBE

COM

Data

A0

A1

A2

A3

Addr

Addr

Addr

Addr

Write

D0

D1

D0

D1

D0

D1

XBusy

XBusy

Write

Write

D0

D1

Write

Write

Read

note 1

Write

Write

Write

Write

_986121082.vsd
STROBE�

COM�

STROBE�

COM�

Data�

Data�

A0�

A1�

A2�

A3�

Addr�

Addr�

Addr�

Addr�

Write�

D0�

D1�

Write�

A0�

A1�

A2�

A3�

Addr�

D0�

D1�

D0�

D1�

Write�

Write�

Write�

Addr�

Write�

Write�

XBusy�

Addr�

XBusy�

D0�

D1�

Read�

note 1�

Write�

Write�

Addr�

Write�

D0�

D1�

A0�

A1�

A2�

A3�

Addr�

Addr�

Addr�

Addr�

Read�

D0�

D1�

