
Philips Semiconductors

80C51 Family 80C51 family architecture

2-3March 1995

80C51 ARCHITECTURE

MEMORY ORGANIZATION
All 80C51 devices have separate address spaces for program and
data memory, as shown in Figures 1 and 2. The logical separation of
program and data memory allows the data memory to be accessed
by 8-bit addresses, which can be quickly stored and manipulated by
an 8-bit CPU. Nevertheless, 16-bit data memory addresses can also
be generated through the DPTR register.

Program memory (ROM, EPROM) can only be read, not written to.
There can be up to 64k bytes of program memory. In the 80C51, the
lowest 4k bytes of program are on-chip. In the ROMless versions, all
program memory is external. The read strobe for external program
memory is the PSEN (program store enable).

Data Memory (RAM) occupies a separate address space from
Program Memory. In the 80C51, the lowest 128 bytes of data
memory are on-chip. Up to 64k bytes of external RAM can be
addressed in the external Data Memory space. In the ROMless
version, the lowest 128 bytes are on-chip. The CPU generates read
and write signals, RD and WR, as needed during external Data
Memory accesses.

External Program Memory and external Data Memory may be
combined if desired by applying the RD and PSEN signals to the
inputs of an AND gate and using the output of the gate as the read
strobe to the external Program/Data memory.

Program Memory
Figure 3 shows a map of the lower part of the Program Memory.
After reset, the CPU begins execution from location 0000H. As
shown in Figure 3, each interrupt is assigned a fixed location in
Program Memory. The interrupt causes the CPU to jump to that
location, where it commences execution of the service routine.
External Interrupt 0, for example, is assigned to location 0003H. If
External Interrupt 0 is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to be used, its
service location is available as general purpose Program Memory.

The interrupt service locations are spaced at 8-byte intervals: 0003H
for External Interrupt 0, 000BH for Timer 0, 0013H for External
Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is
short enough (as is often the case in control applications), it can
reside entirely within that 8-byte interval. Longer service routines
can use a jump instruction to skip over subsequent interrupt
locations, if other interrupts are in use.

The lowest 4k bytes of Program Memory can either be in the on-chip
ROM or in an external ROM. This selection is made by strapping the
EA (External Access) pin to either VCC, or VSS. In the 80C51, if the
EA pin is strapped to VCC, then the program fetches to addresses
0000H through 0FFFH are directed to the internal ROM. Program
fetches to addresses 1000H through FFFFH are directed to external
ROM.

If the EA pin is strapped to VSS, then all program fetches are
directed to external ROM. The ROMless parts (8031, 80C31, etc.)
must have this pin externally strapped to VSS to enable them to
execute from external Program Memory.

The read strobe to external ROM, PSEN, is used for all external
program fetches. PSEN is not activated for internal program fetches.

The hardware configuration for external program execution is shown
in Figure 4. Note that 16 I/O lines (Ports 0 and 2) are dedicated to
bus functions during external Program Memory fetches. Port 0 (P0
in Figure 4) serves as a multiplexed address/data bus. It emits the
low byte of the Program Counter (PCL) as an address, and then
goes into a float state awaiting the arrival of the code byte from the
Program Memory. During the time that the low byte of the Program
Counter is valid on Port 0, the signal ALE (Address Latch Enable)
clocks this byte into an address latch. Meanwhile, Port 2 (P2 in
Figure 4) emits the high byte of the Program Counter (PCH). Then
PSEN strobes the EPROM and the code byte is read into the
microcontroller.

Program Memory addresses are always 16 bits wide, even though
the actual amount of Program Memory used may be less than 64k
bytes. External program execution sacrifices two of the 8-bit ports,
P0 and P2, to the function of addressing the Program Memory.

External
Interrupts

Interrupt
Control

CPU

Osc

4k

ROM

Bus
Control

128

RAM

Four I/O Ports

P0 P2 P1 P3

Address/Data

Serial
Port

Timer 1

Timer 0

Counter
Inputs

TXD RXD

SU00458

Figure 1. 80C51 Block Diagram

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-4

EA = 0
External

EA = 1
Internal

PSEN

0000

0FFFH

FFFFH:

Program Memory
(Read Only)

Data Memory
(Read/Write)

RD WR

FFH:

00

Internal

External

FFFFH:

SU00459

Figure 2. 80C51 Memory Structure

Interrupt
Locations

Reset

0023H

001BH

0013H

000BH

0003H

0000H

8 Bytes

SU00460

Figure 3. 80C51 Program Memory

80C51

Latch

EPROM

P0

ALE

EA

P2

PSEN OE

ADDR

SU00461

Figure 4. Executing from External Program Memory

Data Memory
The right half of Figure 2 shows the internal and external Data
Memory spaces available to the 80C51 user. Figure 5 shows a
hardware configuration for accessing up to 2k bytes of external
RAM. The CPU in this case is executing from internal ROM. Port 0
serves as a multiplexed address/data bus to the RAM, and 3 lines of
Port 2 are being used to page the RAM. The CPU generates RD
and WR signals as needed during external RAM accesses. There
can be up to 64k bytes of external Data Memory. External Data

Memory addresses can be either 1 or 2 bytes wide. One-byte
addresses are often used in conjunction with one or more other I/O
lines to page the RAM, as shown in Figure 5.

Two-byte addresses can also be used, in which case the high
address byte is emitted at Port 2.

Internal Data Memory is mapped in Figure 6. The memory space is
shown divided into three blocks, which are generally referred to as
the Lower 128, the Upper 128, and SFR space.

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-5

Internal Data Memory addresses are always one byte wide, which
implies an address space of only 256 bytes. However, the
addressing modes for internal RAM can in fact accommodate 384
bytes, using a simple trick. Direct addresses higher than 7FH
access one memory space, and indirect addresses higher than 7FH
access a different memory space. Thus Figure 6 shows the Upper
128 and SFR space occupying the same block of addresses, 80H
through FFH, although they are physically separate entities.

The Lower 128 bytes of RAM are present in all 80C51 devices as
mapped in Figure 7. The lowest 32 bytes are grouped into 4 banks
of 8 registers. Program instructions call out these registers as R0
through R7. Two bits in the Program Status Word (PSW) select
which register bank is in use. This allows more efficient use of code
space, since register instructions are shorter than instructions that
use direct addressing.

The next 16 bytes above the register banks form a block of
bit-addressable memory space. The 80C51 instruction set includes
a wide selection of single-bit instructions, and the 128 bits in this
area can be directly addressed by these instructions. The bit
addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or
indirect addressing. The Upper 128 (Figure 8) can only be accessed
by indirect addressing.

Figure 9 gives a brief look at the Special Function Register (SFR)
space. SFRs include the Port latches, timers, peripheral controls,
etc. These registers can only be accessed by direct addressing.
Sixteen addresses in SFR space are both byte- and bit-addressable.
The bit-addressable SFRs are those whose address ends in 0H or 8H.

80C51
with

Internal
ROM

Latch

Data

P0

ALE

EA

P2
RD

OE

ADDR

VCC

WR WE

RAM

P3

I/O
Page
Bits

SU00462

Figure 5. Accessing External Data Memory
If the Program Memory Is Internal,

the Other Bits of P2 Are Available as I/O

Accessible
by Indirect
Addressing

Only

Accessible
by Direct

and Indirect
Addressing

Accessible
by Direct

Addressing

FFH

80H

7FH

Upper
128

Lower
128

0
Special
Function
Registers

FFH

80H

Ports,
Status and
Control Bits,
Timer,
Registers,
Stack Pointer,
Accumulator
(Etc.)

SU00463

Figure 6. Internal Data Memory

7FH

2FH

20H

18H

10H

08H

0

11

10

01

00

Bank
Select
Bits in
PSW

Bit-Addressable Space
(Bit Addresses 0-7F)

4 Banks of
8 Registers
R0-R7

1FH

17H

0FH

07H Reset Value of
Stack Pointer

SU00464

Figure 7. Lower 128 Bytes of Internal RAM

FFH

80H

No Bit-Addressable
Spaces

SU00465

Figure 8. Upper 128 Bytes of Internal RAM

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-6

FFH

E0H

B0H

A0H

90H

80H

ACC

Port 3

Port 2

Port 0

Port 1

Register-Mapped Ports

Addresses that end in 0H or 8H
are also
bit-addressable.

- Port Pins
- Accumulator
- PSW

(Etc.)

.

.

.

.

.

.

.

.

.

.

.

.

SU00466

Figure 9. SFR Space

CY AC F0 RS1 RS0 OV P

PSW 7

Carry flag receives carry out
from bit 7 of ALU operands

PSW 0

Parity of accumulator set
by hardware to 1 if it contains
an odd number of 1s; otherwise
it is reset to 0.

PSW 1

User-definable flag

PSW 6

Auxiliary carry flag receives carry out from bit 3
of addition operands.

PSW 5

General purpose status flag

PSW 2

Overflow flag set by
arithmetic operations

PSW 3
Register bank select bit 0

PSW 4
Register bank select bit 1

SU00467

Figure 10. PSW (Program Status Word) Register in 80C51 Devices

80C51 FAMILY INSTRUCTION SET
The 80C51 instruction set is optimized for 8-bit control applications.
It provides a variety of fast addressing modes for accessing the
internal RAM to facilitate byte operations on small data structures.
The instruction set provides extensive support for one-bit variables
as a separate data type, allowing direct bit manipulation in control
and logic systems that require Boolean processing.

Program Status Word
The Program Status Word (PSW) contains several status bits that
reflect the current state of the CPU. The PSW, shown in Figure 10,
resides in the SFR space. It contains the Carry bit, the Auxiliary
Carry (for BCD operations), the two register bank select bits, the
Overflow flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the function of a Carry bit in
arithmetic operations, also serves as the “Accumulator” for a
number of Boolean operations.

The bits RS0 and RS1 are used to select one of the four register
banks shown in Figure 7. A number of instructions refer to these

RAM locations as R0 through R7. The selection of which of the four
is being referred to is made on the basis of the RS0 and RS1 at
execution time.

The Parity bit reflects the number of 1s in the Accumulator: P = 1 if
the Accumulator contains an odd number of 1s, and P = 0 if the
Accumulator contains an even number of 1s. Thus the number of 1s
in the Accumulator plus P is always even. Two bits in the PSW are
uncommitted and may be used as general purpose status flags.

Addressing Modes
The addressing modes in the 80C51 instruction set are as follows:

Direct Addressing
In direct addressing the operand is specified by an 8-bit address
field in the instruction. Only internal Data RAM and SFRs can be
directly addressed.

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-7

Indirect Addressing
In indirect addressing the instruction specifies a register which
contains the address of the operand. Both internal and external
RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the
selected bank, or the Stack Pointer. The address register for 16-bit
addresses can only be the 16-bit “data pointer” register, DPTR.

Register Instructions
The register banks, containing registers R0 through R7, can be
accessed by certain instructions which carry a 3-bit register
specification within the opcode of the instruction. Instructions that
access the registers this way are code efficient, since this mode
eliminates an address byte. When the instruction is executed, one of
the eight registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank select bits in the
PSW.

Register-Specific Instructions
Some instructions are specific to a certain register. For example,
some instructions always operate on the Accumulator, or Data
Pointer, etc., so no address byte is needed to point to it. The opcode
itself does that. Instructions that refer to the Accumulator as A
assemble as accumulator specific opcodes.

Immediate Constants
The value of a constant can follow the opcode in Program Memory.
For example,

MOV A, #100
loads the Accumulator with the decimal number 100. The same
number could be specified in hex digits as 64H.

Indexed Addressing
Only program Memory can be accessed with indexed addressing,
and it can only be read. This addressing mode is intended for
reading look-up tables in Program Memory A 16-bit base register
(either DPTR or the Program Counter) points to the base of the
table, and the Accumulator is set up with the table entry number.

The address of the table entry in Program Memory is formed by
adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the “case jump”
instruction. In this case the destination address of a jump instruction
is computed as the sum of the base pointer and the Accumulator
data.

Arithmetic Instructions
The menu of arithmetic instructions is listed in Table 1. The table
indicates the addressing modes that can be used with each
instruction to access the <byte> operand. For example, the ADD
A,<byte> instruction can be written as:

ADD a, 7FH (direct addressing)
ADD A, @R0 (indirect addressing)
ADD a, R7 (register addressing)
ADD A, #127 (immediate constant)

The execution times listed in Table 1 assume a 12MHz clock
frequency. All of the arithmetic instructions execute in 1µs except
the INC DPTR instruction, which takes 2µs, and the Multiply and
Divide instructions, which take 4µs.

Note that any byte in the internal Data Memory space can be
incremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The
Data Pointer is used to generate 16-bit addresses for external
memory, so being able to increment it in one 16-bit operation is a
useful feature.

The MUL AB instruction multiplies the Accumulator by the data in
the B register and puts the 16-bit product into the concatenated B
and Accumulator registers.

The DIV AB instruction divides the Accumulator by the data in the B
register and leaves the 8-bit quotient in the Accumulator, and the
8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic “divide” routines
than in radix conversions and programmable shift operations. An
example of the use of DIV AB in a radix conversion will be given
later. In shift operations, dividing a number by 2n shifts its n bits to
the right. Using DIV AB to perform the division completes the shift in
4µs and leaves the B register holding the bits that were shifted out.
The DA A instruction is for BCD arithmetic operations. In BCD
arithmetic, ADD and ADDC instructions should always be followed
by a DA A operation, to ensure that the result is also in BCD. Note
that DA A will not convert a binary number to BCD. The DA A
operation produces a meaningful result only as the second step in
the addition of two BCD bytes.

Table 1. 80C51 Arithmetic Instructions
MNEMONIC OPERATION ADDRESSING MODES EXECUTION

DIR IND REG IMM TIME (µs)

ADD A,<byte> A = A + <byte> X X X X 1

ADDC A,<byte> A = A + <byte> + C X X X X 1

SUBB A,<byte> A = A – <byte> – C X X X X 1

INC A A = A + 1 Accumulator only 1

INC <byte> <byte> = <byte> + 1 X X X 1

INC DPTR DPTR = DPTR + 1 Data Pointer only 2

DEC A A = A – 1 Accumulator only 1

DEC <byte> <byte> = <byte> – 1 X X X 1

MUL AB B:A = B x A ACC and B only 4

DIV AB A = Int[A/B]
B = Mod[A/B] ACC and B only 4

DA A Decimal Adjust Accumulator only 1

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-8

Logical Instructions
Table 2 shows the list of 80C51 logical instructions. The instructions
that perform Boolean operations (AND, OR, Exclusive OR, NOT) on
 bytes perform the operation on a bit-by-bit basis. That is, if the
Accumulator contains 00110101B and byte contains 01010011B,
then:

ANL A, <byte>

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the <byte>
operand are listed in Table 2.

The ANL A, <byte> instruction may take any of the forms:
ANL A,7FH (direct addressing)
ANL A,@R1 (indirect addressing)
ANL A,R6 (register addressing)
ANL A,#53H (immediate constant)

All of the logical instructions that are Accumulator-specific execute
in 1µs (using a 12MHz clock). The others take 2µs.

Note that Boolean operations can be performed on any byte in the
internal Data Memory space without going through the Accumulator.
The XRL <byte>, #data instruction, for example, offers a quick and
easy way to invert port bits, as in XRL P1, #OFFH.

If the operation is in response to an interrupt, not using the
Accumulator saves the time and effort to push it onto the stack in the
service routine.

The Rotate instructions (RL, A, RLC A, etc.) shift the Accumulator 1
bit to the left or right. For a left rotation, the MSB rolls into the LSB
position. For a right rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles
within the Accumulator. This is a useful operation in BCD
manipulations. For example, if the Accumulator contains a binary
number which is known to be less than 100, it can be quickly
converted to BCD by the following code:

MOVE B,#10
DIV AB
SWAP A
ADD A,B

Dividing the number by 10 leaves the tens digit in the low nibble of
the Accumulator, and the ones digit in the B register. The SWAP and
ADD instructions move the tens digit to the high nibble of the
Accumulator, and the ones digit to the low nibble.

Data Transfers

Internal RAM
Table 3 shows the menu of instructions that are available for moving
data around within the internal memory spaces, and the addressing
modes that can be used with each one. With a 12MHz clock, all of
these instructions execute in either 1 or 2µs.

The MOV <dest>, <src> instruction allows data to be transferred
between any two internal RAM or SFR locations without going
through the Accumulator. Remember, the Upper 128 bytes of data
RAM can be accessed only by indirect addressing, and SFR space
only by direct addressing.

Note that in 80C51 devices, the stack resides in on-chip RAM, and
grows upwards. The PUSH instruction first increments the Stack
Pointer (SP), then copies the byte into the stack. PUSH and POP
use only direct addressing to identify the byte being saved or
restored, but the stack itself is accessed by indirect addressing
using the SP register. This means the stack can go into the Upper
128 bytes of RAM, if they are implemented, but not into SFR space.

The Upper 128 bytes of RAM are not implemented in the 80C51 nor
in its ROMless or EPROM counterparts. With these devices, if the
SP points to the Upper 128, PUSHed bytes are lost, and POPed
bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be
used to initialize the Data Pointer (DPTR) for look-up tables in
Program Memory, or for 16-bit external Data Memory accesses.

Table 2. 80C51 Logical Instructions
MNEMONIC OPERATION ADDRESSING MODES EXECUTION

DIR IND REG IMM TIME (µs)

ANL A,<byte> A = A.AND. <byte> X X X X 1

ANL <byte>,A <byte> = <byte> .AND.A X 1

ANL <byte>,#data <byte> = <byte> .AND.#data X 2

ORL A,<byte> A = A.OR.<byte> X X X X 1

ORL <byte>,A <byte> = <byte> .OR.A X 1

ORL <byte>,#data <byte> = <byte> .OR.#data X 2

XRL A,<byte> A = A.XOR. <byte> X X X X 1

XRL <byte>,A <byte> = <byte> .XOR.A X 1

XRL <byte>,#data <byte> = <byte> .XOR.#data X 2

CRL A A = 00H Accumulator only 1

CPL A A = .NOT.A Accumulator only 1

RL A Rotate ACC Left 1 bit Accumulator only 1

RLC A Rotate Left through Carry Accumulator only 1

RR A Rotate ACC Right 1 bit Accumulator only 1

RRC A Rotate Right through Carry Accumulator only 1

SWAP A Swap Nibbles in A Accumulator only 1

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-9

Table 3. Data Transfer Instructions that Access Internal Data Memory Space
MNEMONIC OPERATION ADDRESSING MODES EXECUTION

DIR IND REG IMM TIME (µs)

MOV A,<src> A = <src> X X X X 1

MOV <dest>,A <dest> = A X X X 1

MOV <dest>,<src> <dest> = <src> X X X X 2

MOV DPTR,#data16 DPTR = 16-bit immediate constant X 2

PUSH <src> INC SP:MOV“@SP”,<src> X 2

POP <dest> MOV <dest>,“@SP”:DEC SP X 2

XCH A,<byte> ACC and <byte> exchange data X X X 1

XCHD A,@Ri ACC and @Ri exchange low nibbles X 1

The XCH A, <byte> instruction causes the Accumulator and
addressed byte to exchange data. The XCHD A, @Ri instruction is
similar, but only the low nibbles are involved in the exchange.

To see how XCH and XCHD can be used to facilitate data
manipulations, consider first the problem of shifting an 8-digit BCD
number two digits to the right. Figure 11 shows how this can be
done using direct MOVs, and for comparison how it can be done
using XCH instructions. To aid in understanding how the code
works, the contents of the registers that are holding the BCD
number and the content of the Accumulator are shown alongside
each instruction to indicate their status after the instruction has been
executed.

After the routine has been executed, the Accumulator contains the
two digits that were shifted out on the right. Doing the routine with
direct MOVs uses 14 code bytes and 9µs of execution time
(assuming a 12MHz clock). The same operation with XCHs uses
only 9 bytes and executes almost twice as fast.

To right-shift by an odd number of digits, a one-digit shift must be
executed.

Figure 12 shows a sample of code that will right-shift a BCD number
one digit, using the XCHD instruction. Again, the contents of the
registers holding the number and of the Accumulator are shown
alongside each instruction.

First, pointers R1 and R0 are set up to point to the two bytes
containing the last four BCD digits. Then a loop is executed which

leaves the last byte, location 2EH, holding the last two digits of the
shifted number. The pointers are decremented, and the loop is
repeated for location 2DH. The CJNE instruction (Compare and
Jump if Not Equal) is a loop control that will be described later. The
loop executed from LOOP to CJNE for R1 = 2EH, 2DH, 2CH, and
2BH. At that point the digit that was originally shifted out on the right
has propagated to location 2AH. Since that location should be left
with 0s, the lost digit is moved to the Accumulator.

External RAM
Table 4 shows a list of the Data Transfer instructions that access
external Data Memory. Only indirect addressing can be used. The
choice is whether to use a one-byte address, @Ri, where Ri can be
either R0 or R1 of the selected register bank, or a two-byte address,
@DPTR. The disadvantage to using 16-bit addresses if only a few k
bytes of external RAM are involved is that 16-bit addresses use all 8
bits of Port 2 as address bus. On the other hand, 8-bit addresses
allow one to address a few bytes of RAM, as shown in Figure 5,
without having to sacrifice all of Port 2. All of these instructions
execute in 2 µs, with a 12MHz clock.

Note that in all external Data RAM accesses, the Accumulator is
always either the destination or source of the data.

The read and write strobes to external RAM are activated only
during the execution of a MOVX instruction. Normally these signals
are inactive, and in fact if they’re not going to be used at all, their
pins are available as extra I/O lines.

MOV A,2EH 00 12 34 56 78 78
MOV 2EH,2DH 00 12 34 56 56 78
MOV 2DH,2CH 00 12 34 34 56 78
MOV 2CH,2BH 00 12 12 34 56 78
MOV 2BH,#0 00 00 12 34 56 78

2A 2B 2C 2D 2E ACC

A. Using direct MOVs: 14 bytes, 9 µs

CLR A 00 12 34 56 78 00
XCH A,2BH 00 00 34 56 78 12
XCH A,2CH 00 00 12 56 78 34
XCH A,2DH 00 00 12 34 78 56
XCH A2EH 00 00 12 34 56 78

2A 2B 2C 2D 2E ACC

B. Using XCHs: 9 bytes, 5 µs

SU00468

Figure 11. Shifting a BCD Number Two Digits to the Right

MOV R1,#2EH 00 12 34 56 78 XX
MOV R0,#2DH 00 12 34 56 78 XX

2A 2B 2C 2D 2E ACC

loop for R1 = 2EH:

MOV A,@R1 00 12 34 56 78 78
XCHD A,@R0 00 12 34 58 78 76
SWAP A 00 12 34 58 78 67
MOV @R1,A 00 12 34 58 67 67
DEC R1 00 12 34 58 67 67
DEC R0 00 12 34 58 67 67
CJNE R1,#2AH,LOOP

LOOP:

loop for R1 = 2DH: 00 12 38 45 67 45
00 18 23 45 67 23
08 01 23 45 67 01

loop for R1 = 2CH:
loop for R1 = 2BH:

CLR A 08 01 23 45 67 00
XCH A,2AH 00 01 23 45 67 08

SU00469

Figure 12. Shifting a BCD Number One Digit to the Right

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-10

Table 4. 80C51 Data Transfer Instructions that Access External Data Memory Space
ADDRESS

WIDTH
MNEMONIC OPERATION EXECUTION

TIME (µs)

8 bits MOVX A,@Ri Read external RAM @Ri 2

8 bits MOVX @Ri,A Write external RAM @ Ri 2

16 bits MOVX A,@DPTR Read external RAM @ DPTR 2

16 bits MOVX @DPTR,A Write external RAM @ DPTR 2

Table 5. 80C51 Lookup Table Read Instructions
MNEMONIC OPERATION EXECUTION TIME (µs)

MOVC A,@A+DPTR Read program memory at (A + DPTR) 2

MOVC A,@A+PC Read program memory at (A + PC) 2

Lookup Tables
Table 5 shows the two instructions that are available for reading
lookup tables in Program Memory. Since these instructions access
only Program Memory, the lookup tables can only be read, not
updated.

If the table access is to external Program Memory, then the read
strobe is PSEN.

The mnemonic is MOVC for “move constant.” The first MOVC
instruction in Table 5 can accommodate a table of up to 256 entries
numbered 0 through 255. The number of the desired entry is loaded
into the Accumulator, and the Data Pointer is set up to point to the
beginning of the table. Then:

MOVC A,@A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the
Program Counter (PC) is used as the table base, and the table is
accessed through a subroutine. First the number of the desired
entry is loaded into the Accumulator, and the subroutine is called:

MOV A,ENTRY NUMBER
CALL TABLE

The subroutine “TABLE” would look like this:
TABLE: MOVC A,@A+PC

RET

The table itself immediately follows the RET (return) instruction in
Program Memory. This type of table can have up to 255 entries,
numbered 1 through 255. Number 0 cannot be used, because at the
time the MOVC instruction is executed, the PC contains the address
of the RET instruction. An entry numbered 0 would be the RET
opcode itself.

Boolean Instructions
80C51 devices contain a complete Boolean (single-bit) processor.
The internal RAM contains 128 addressable bits, and the SFR
space can support up to 128 addressable bits as well. All of the port
lines are bit-addressable, and each one can be treated as a
separate single-bit port. The instructions that access these bits are
not just conditional branches, but a complete menu of move, set,
clear, complement, OR, and AND instructions. These kinds of bit
operations are not easily obtained in other architectures with any
amount of byte-oriented software.

The instruction set for the Boolean processor is shown in Table 6. All
bit accesses are by direct addressing.

Bit addresses 00H through 7FH are in the Lower 128, and bit
addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:
MOV C,FLAG
MOV P1.0,C

In this example, FLAG is the name of any addressable bit in the
Lower 128 or SFR space. An I/O line (the LSB of Port 1, in this
case) is set or cleared depending on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accumulator of
the Boolean processor. Bit instructions that refer to the Carry bit as
C assemble as Carry-specific instructions (CLR C, etc.). The Carry
bit also has a direct address, since it resides in the PSW register,
which is bit-addressable.

Note that the Boolean instruction set includes ANL and ORL
operations, but not the XRL (Exclusive OR) operation. An XRL
operation is simple to implement in software. Suppose, for example,
it is required to form the Exclusive OR of two bits:

C = bit1 .XRL. bit2

The software to do that could be as follows:
MOV C,bit1
JNB bit2,OVER
CPL C

OVER: (continue)

First, bit1 is moved to the Carry. If bit2 = 0, then C now contains the
correct result. That is, bit1 .XRL. bit2 = bit1 if bit2 = 0. On the other
hand, if bit2 = 1, C now contains the complement of the correct
result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test
instructions which execute a jump if the addressed bit is set (JC, JB,
JBC) or if the addressed bit is not set (JNC, JNB). In the above
case, bit2 is being tested, and if bit2 = 0, the CPL C instruction is
jumped over.

JBC executes the jump if the addressed bit is set, and also clears
the bit. Thus a flag can be tested and cleared in one operation. All
the PSW bits are directly addressable, so the Parity bit, or the
general purpose flags, for example, are also available to the bit-test
instructions.

Relative Offset
The destination address for these jumps is specified to the
assembler by a label or by an actual address in Program memory.
However, the destination address assembles to a relative offset
byte. This is a signed (two’s complement) offset byte which is added
to the PC in two’s complement arithmetic if the jump is executed.
The range of the jump is therefore –128 to +127 Program Memory
bytes relative to the first byte following the instruction.

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-11

Table 6. 80C51 Boolean Instructions
MNEMONIC OPERATION EXECUTION TIME (µs)

ANL C,bit C = C.AND.bit 2

ANL C,/bit C = C.AND..NOT.bit 2

ORL C,bit C = C.OR.bit 2

ORL C,/bit C = C.OR..NOT.bit 2

MOV C,bit C = bit 1

MOV bit,C bit = C 2

CLR C C = 0 1

CLR bit bit = 0 1

SETB C C = 1 1

SETB bit bit = 1 1

CPL C C = .NOT.C 1

CPL bit bit = .NOT.bit 1

JC rel Jump if C = 1 2

JNC rel Jump if C = 0 2

JB bit,rel Jump if bit = 1 2

JNB bit,rel Jump if bit = 0 2

JBC bit,rel Jump if bit = 1; CLR bit 2

Table 7. Unconditional Jumps in 80C51 Devices
MNEMONIC OPERATION EXECUTION TIME (µs)

JMP addr Jump to addr 2

JMP @A+DPTR Jump to A + DPTR 2

CALL addr Call subroutine at addr 2

RET Return from subroutine 2

RETI Return from interrupt 2

NOP No operation 1

Jump Instructions
Table 7 shows the list of unconditional jumps with execution time for
a 12MHz clock.

The table lists a single “JMP addr” instruction, but in fact there are
three SJMP, LJMP, and AJMP, which differ in the format of the
destination address. JMP is a generic mnemonic which can be used
if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as a relative
offset, as described above. The instruction is 2 bytes long,
consisting of the opcode and the relative offset byte. The jump
distance is limited to a range of –128 to +127 bytes relative to the
instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit
constant. The instruction is 3 bytes long, consisting of the opcode
and two address bytes. The destination address can be anywhere in
the 64k Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit
constant. The instruction is 2 bytes long, consisting of the opcode,
which itself contains 3 of the 11 address bits, followed by another
byte containing the low 8 bits of the destination address. When the
instruction is executed, these 11 bits are simply substituted for the
low 11 bits in the PC. The high 5 bits stay the same. Hence the
destination has to be within the same 2k block as the instruction
following the AJMP.

In all cases the programmer specifies the destination address to the
assembler in the same way: as a label or as a 16-bit constant. The
assembler will put the destination address into the correct format for
the given instruction. If the format required by the instruction will not
support the distance to the specified destination address, a
“Destination out of range” message is written into the List file.

The JMP @A+DPTR instruction supports case jumps. The
destination address is computed at execution time as the sum of the
16-bit DPTR register and the Accumulator. Typically, DPTR is set up
with the address of a jump table. In a 5-way branch, for example, an
integer 0 through 4 is loaded into the Accumulator. The code to be
executed might be as follows:

MOV DPTR,#JUMP TABLE
MOV A,INDEX_NUMBER
RL A
JMP @A+DPTR

The RL A instruction converts the index number (0 through 4) to an
even number on the range 0 through 8, because each entry in the
jump table is 2 bytes long:
JUMP TABLE:

AJMP CASE 0
AJMP CASE 1
AJMP CASE 2
AJMP CASE 3
AJMP CASE 4

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-12

Table 7 shows a single “CALL addr” instruction, but there are two of
them, LCALL and ACALL, which differ in the format in which the
subroutine address is given to the CPU. CALL is a generic
mnemonic which can be used if the programmer does not care
which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the
subroutine can be anywhere in the 64k Program Memory space.
The ACALL instruction uses the 11-bit format, and the subroutine
must be in the same 2k block as the instruction following the
ACALL.

In any case, the programmer specifies the subroutine address to the
assembler in the same way: as a label or as a 16-bit constant. The
assembler will put the address into the correct format for the given
instructions.

Subroutines should end with a RET instruction, which returns
execution to the instruction following the CALL.

RETI is used to return from an interrupt service routine. The only
difference between RET and RETI is that RETI tells the interrupt
control system that the interrupt in progress is done. If there is no
interrupt in progress at the time RETI is executed, then the RETI is
functionally identical to RET.

Table 8 shows the list of conditional jumps available to the 80C51
user. All of these jumps specify the destination address by the
relative offset method, and so are limited to a jump distance of –128
to +127 bytes from the instruction following the conditional jump
instruction. Important to note, however, the user specifies to the
assembler the actual destination address the same way as the other
jumps: as a label or a 16-bit constant.

There is no Zero bit in the PSW. The JZ and JNZ instructions test
the Accumulator data for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop
control. To execute a loop N times, load a counter byte with N and
terminate the loop with a DJNZ to the beginning of the loop, as
shown below for N = 10.

MOV COUNTER,#10
LOOP: (begin loop)

•
•
•

(end loop)
DJNZ COUNTER,LOOP
(continue)

The CJNE instruction (Compare and Jump if Not Equal) can also be
used for loop control as in Figure 12. Two bytes are specified in the
operand field of the instruction. The jump is executed only if the two
bytes are not equal. In the example of Figure 12, the two bytes were
data in R1 and the constant 2AH. The initial data in R1 was 2EH.
Every time the loop was executed, R1 was decremented, and the
looping was to continue until the R1 data reached 2AH.

Another application of this instruction is in “greater than, less than”
comparisons. The two bytes in the operand field are taken as
unsigned integers. If the first is less than the second, then the Carry
bit is set (1). If the first is greater than or equal to the second, then
the Carry bit is cleared.

CPU Timing
All 80C51 microcontrollers have an on-chip oscillator which can be
used if desired as the clock source for the CPU. To use the on-chip
oscillator, connect a crystal or ceramic resonator between the
XTAL1 and XTAL2 pins of the microcontroller, and capacitors to
ground as shown in Figure 13.

Examples of how to drive the clock with an external oscillator are
shown in Figure 14. Note that in the NMOS devices (8051, etc.) the
signal at the XTAL2 pin actually drives the internal clock generator.
In the CMOS devices (80C51, etc.), the signal at the XTAL1 pin
drives the internal clock generator. The internal clock generator
defines the sequence of states that make up the 80C51 machine
cycle.

Quartz crystal
or ceramic
resonator

C1

C2

XTAL2

XTAL1

VSS

HMOS or
CMOS

SU00470

Figure 13. Using the On-Chip Oscillator

Table 8. Conditional Jumps in 80C51 Devices
MNEMONIC OPERATION ADDRESSING MODES EXECUTION

DIR IND REG IMM TIME (µs)

JZ rel Jump if A = 0 Accumulator only 2

JNZ rel Jump if A ≠ 0 Accumulator only 2

DJNZ <byte>,rel Decrement and jump if not zero X X 2

CJNE A,<byte>,rel Jump if A ≠ <byte> X X 2

CJNE <byte>,#data,rel Jump if <byte> ≠ #data X X 2

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-13

External
clock

signal

XTAL2

XTAL1

VSS

a. NMOS or CMOS

External
clock

signal
XTAL2

XTAL1

VSS

b. NMOS Only

External
clock

signal

XTAL2

XTAL1

VSS

c. CMOS Only

(NC)

SU00471

Figure 14. Using an External Clock

Machine Cycles
A machine cycle consists of a sequence of 6 states, numbered S1
through S6. Each state time lasts for two oscillator periods. Thus a
machine cycle takes 12 oscillator periods or 1µs if the oscillator
frequency is 12MHz.

Each state is divided into a Phase 1 half and a Phase 2 half.
Figure 15 shows that fetch/execute sequences in states and phases
for various kinds of instructions. Normally two program fetches are
generated during each machine cycle, even if the instruction being
executed doesn’t require it. If the instruction being executed doesn’t
need more code bytes, the CPU simply ignores the extra fetch, and
the Program Counter is not incremented.

Execution of a one-cycle instruction (Figures 15a and 15b) begins
during State 1 of the machine cycle, when the opcode is latched into
the Instruction Register. A second fetch occurs during S4 of the
same machine cycle. Execution is complete at the end of State 6 of
this machine cycle.

The MOVX instructions take two machine cycles to execute. No
program fetch is generated during the second cycle of a MOVX
instruction. This is the only time program fetches are skipped. The
fetch/execute sequence for MOVX instructions is shown in Figure
15d.

The fetch/execute sequences are the same whether the Program
Memory is internal or external to the chip. Execution times do not
depend on whether the Program Memory is internal or external.

Figure 16 shows the signals and timing involved in program fetches
when the Program Memory is external. If Program Memory is
external, then the Program Memory read strobe PSEN is normally
activated twice per machine cycle, as shown in Figure 16a. If an
access to external Data Memory occurs, as shown in Figure 16b,
two PSENs are skipped, because the address and data bus are
being used for the Data Memory access.

Note that a Data Memory bus cycle takes twice as much time as a
Program Memory bus cycle. Figure 16 shows the relative timing of
the addresses being emitted at Ports 0 and 2, and of ALE and
PSEN. ALE is used to latch the low address byte from P0 into the
address latch.

When the CPU is executing from internal Program Memory, PSEN is
not activated, and program addresses are not emitted. However,
ALE continues to be activated twice per machine cycle and so it is
available as a clock output signal. Note, however, that one ALE is
skipped during the execution of the MOVX instruction.

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-14

Osc.
(XTAL2)

S1

P1 P2

S2

P1 P2

S3

P1 P2

S4

P1 P2

S5

P1 P2

S6

P1 P2

S1

P1 P2

S2

P1 P2

S3

P1 P2

S4

P1 P2

S5

P1 P2

S6

P1 P2

S1

P1 P2

ALE

S1 S2 S3 S4 S5 S6

Read opcode.
Read next
opcode
(discard).

Read next opcode again.

a. 1-byte, 1-cycle Instruction, e.g., INC A

S1 S2 S3 S4 S5 S6

Read opcode. Read 2nd byte. Read next opcode.

b. 2-byte, 1-cycle Instruction, e.g., ADD A,#data

S1 S2 S3 S4 S5 S6

Read opcode. Read next
opcode (discard)

Read next opcode again.

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

Read opcode.
(MOVX) Read next

opcode (discard)

Read next opcode again.

d. MOVX (1-byte, 2-cycle)

S1 S2 S3 S4 S5 S6

No
fetch.

No fetch.

ADDR DATA

No ALE

Access external memory.

c. 1-byte, 2-cycle Instruction, e.g., INC DPTR

SU00472

Figure 15. State Sequence in 80C51 Family Devices

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-15

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

One Machine Cycle One Machine Cycle

ALE

PSEN

RD

a. Without a MOVX

P2 PCH out PCH out PCH out PCH out PCH out PCH out

P0 PCL
out

INST
in

PCL
out

INST
in

PCL
out

INST
in

PCL
out

INST
in

PCL
out

INST
in

PCL out
Valid

PCL out
Valid

PCL out
Valid

PCL out
Valid

PCL out
Valid

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

Cycle 1 Cycle 2

ALE

PSEN

RD

b. With a MOVX

P2 PCH out PCH out DPH out or P2 out PCH out PCH out

P0 PCL
out

INST
in

ADDR
out

INST
in

PCL
out

Data
in

PCL
out

INST
in

PCL out
Valid

ADDR out
Valid

PCL out
Valid

SU00473

Figure 16. Bus Cycles in 80C51 Family Devices Executing from External Program Memory

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-16

Symbol Position Function

EA IE.7 Disables all interrupts. If EA = 0, no
interrupt will be acknowledged. If EA = 1,
each interrupt source is individually
enabled or disabled by setting or clearing
its enable bit.

IE.6 Reserved.

IE.5 Reserved.

ES IE.4 Enables or disables the Serial Port
interrupt. If ES = 0, the Serial Port
interrupt is disabled.

ET1 IE.3 Enables or disables the Timer 1 Overflow
interrupt. If ET1 = 0, the Timer 1 interrupt
is disabled.

EX1 IE.2 Enables or disables External Interrupt 1.
If EX1 = 0, External Interrupt 1 is disabled.

ET0 IE.1 Enables or disables the Timer 0 Overflow
interrupt. If ET0 = 0, the Timer 0 interrupt
is disabled.

EX0 IE.0 Enables or disables Exeternal Interrupt 0.
If EX0 = 0, External Interrupt 0 is disabled.

(MSB) (LSB)

EA X X ES ET1 EX1 ET0 EX0

SU00474

Figure 17. Interrupt Enable (IE) Register

Symbol Position Function

IP.7 Reserved.

IP.6 Reserved.

IP.5 Reserved.

PS IP.4 Defines the Serial Port interrupt priority
level. PS = 1 programs it to the higher
priority level.

PT1 IP.3 Defines the Timer 1 interrupt priority
level. PT1 = 1 programs it to the higher
priority level.

PX1 IP.2 Defines the External Interrupt 1 priority
level. PX1 = 1 programs it to the higher
priority level.

PT0 IP.1 Enables or disables the Timer 0 Interrupt
priority level. PT) = 1 programs it to the
higher priority level.

PX0 IP.0 Defines the External Interrupt 0 priority
level. PX0 = 1 programs it to the higher
priority level.

(MSB) (LSB)

X X X PS PT1 PX1 PT0 PX0

SU00475

Figure 18. Interrupt Priority (IP) Register

IE0

IE1

INT0 IT0

TF0

INT1 IT1

TF1

RI

TI

IE Register IP Register
High Priority

 Interrupt

Interrupt Pol-
ling

 Sequence

Low Priority
Interrupt

Individual
 Enables Global

 Disable

0

1

0

1

SU00476

Figure 19. Interrupt Control System

Philips Semiconductors

80C51 Family 80C51 family architecture

March 1995 2-17

Interrupt Structure
The 80C51 and its ROMless and EPROM versions have 5 interrupt
sources: 2 external interrupts, 2 timer interrupts, and the serial port
interrupt.

What follows is an overview of the interrupt structure for the device.
More detailed information for specific members of the 80C51
derivative family is provided in later chapters of this user’s guide.

Interrupt Enables
Each interrupt source can be individually enabled or disabled by
setting or clearing a bit in the SFR named IE (Interrupt Enable). This
register also contains a global disable bit, which can be cleared to
disable all interrupts at once. Figure 17 shows the IE register.

Interrupt Priorities
Each interrupt source can also be individually programmed to one of
two priority levels by setting or clearing a bit in the SFR named IP
(Interrupt Priority). Figure 18 shows the IP register. A low-priority
interrupt can be interrupted by a high-priority interrupt, but not by
another low-priority interrupt. A high-priority interrupt can’t be
interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received
simultaneously, the request of higher priority is serviced. If interrupt
requests of the same priority level are received simultaneously, an
internal polling sequence determines which request is serviced.
Thus within each priority level there is a second priority structure
determined by the polling sequence. Figure 19 shows how the IE
and IP registers and the polling sequence work to determine which if
any interrupt will be serviced.

In operation, all the interrupt flags are latched into the interrupt
control system during State 5 of every machine cycle. The samples
are polled during the following machine cycle. If the flag for an
enabled interrupt is found to be set (1), the interrupt system
generates an LCALL to the appropriate location in Program Memory,
unless some other condition blocks the interrupt. Several conditions
can block an interrupt, among them that an interrupt of equal or
higher priority level is already in progress.

The hardware-generated LCALL causes the contents of the
Program Counter to be pushed into the stack, and reloads the PC
with the beginning address of the service routine. As previously

noted (Figure 3), the service routine for each interrupt begins at a
fixed location.

Only the Program Counter is automatically pushed onto the stack,
not the PSW or any other register. Having only the PC automatically
saved allows the programmer to decide how much time should be
spent saving other registers. This enhances the interrupt response
time, albeit at the expense of increasing the programmer’s burden of
responsibility. As a result, many interrupt functions that are typical in
control applications toggling a port pin for example, or reloading a
timer, or unloading a serial buffer can often be completed in less
time than it takes other architectures to complete.

Simulating a Third Priority Level in Software
Some applications require more than two priority levels that are
provided by on-chip hardware in 80C51 devices. In these cases,
relatively simple software can be written to produce the same effect
as a third priority level. First, interrupts that are to have higher
priority than 1 are assigned to priority 1 in the Interrupt Priority (IP)
register. The service routines for priority 1 interrupts that are
supposed to be interruptable by priority 2 interrupts are written to
include the following code:

PUSH IE
MOV IE,#MASK
CALL LABEL

(execute service routine)

POP IE
RET

LABEL: RETI

As soon as any priority interrupt is acknowledged, the Interrupt
Enable (IE) register is redefined so as to disable all but priority 2
interrupts. Then a CALL to LABEL executes the RETI instruction,
which clears the priority 1 interrupt-in-progress flip-flop. At this point
any priority 1 interrupt that is enabled can be serviced, but only
priority 2 interrupts are enabled.

POPing IE restores the original enable byte. Then a normal RET
(rather than another RETI) is used to terminate the service routine.
The additional software adds 10µs (at 12MHz) to priority 1
interrupts.

	Table of Contents
	List of Figures
	1. 80C51 Block Diagram
	2. 80C51 Memory Structure
	3. 80C51 Program Memory Figure 4. Executing from External Program Memory
	4. Executing from External Program Memory
	5. Accessing External Data Memory If the Program Memory Is Internal, the Other Bits of P2 Are Available as I/O
	6. Internal Data Memory
	7. Lower 128 Bytes of Internal RAM
	8. Upper 128 Bytes of Internal RAM
	9. SFR Space
	10. PSW (Program Status Word) Register in 80C51 Devices
	11. Shifting a BCD Number Two Digits to the Right Figure 12. Shifting a BCD Number One Digit to the Right
	12. Shifting a BCD Number One Digit to the Right
	13. Using the On-Chip Oscillator
	14. Using an External Clock
	15. State Sequence in 80C51 Family Devices
	16. Bus Cycles in 80C51 Family Devices Executing from External Program Memory
	17. Interrupt Enable (IE) Register
	18. Interrupt Priority (IP) Register
	19. Interrupt Control System

	List of Tables
	1. 80C51 Arithmetic Instructions
	2. 80C51 Logical Instructions
	3. Data Transfer Instructions that Access Internal Data Memory Space
	4. 80C51 Data Transfer Instructions that Access External Data Memory Space
	5. 80C51 Lookup Table Read Instructions
	6. 80C51 Boolean Instructions
	7. Unconditional Jumps in 80C51 Devices
	8. Conditional Jumps in 80C51 Devices

	80C51 Architecture
	Memory Organization
	Program Memory
	Data Memory

	80C51 Family Instruction Set
	Program Status Word
	Addressing Modes
	Arithmetic Instructions
	Logical Instructions
	Data Transfers
	Boolean Instructions
	Jump Instructions
	CPU Timing
	Machine Cycles
	Interrupt Structure

