
CSE 477 Introduction to Microcontrollers 1

Processors

❚ Execute programs
❙ Serial execution of instructions
❙ Simple, Universal

❚ Instruction execution engine: fetch/execute cycle
❙ flow of control determined by modifications to program counter
❙ instruction classes:

❘ data: move, arithmetic and logical operations
❘ control: branch, loop, subroutine call
❘ interface: load, store from external memory

❚ Traditional architecture goal: Performance
❙ Caches
❙ Branch prediction
❙ Multiple/OOO issue



CSE 477 Introduction to Microcontrollers 2

Embedded Processors

❚ Processor is a Universal computing engine
❙ Program can compute arbitrary functions
❙ Use a processor for simple/specific tasks

❚ Advantages:
❙ High-level language
❙ Compilers/Debuggers
❙ arbitrary control structures
❙ arbitrary data structures

❚ Disadvantages:
❙ Cost/Size



CSE 477 Introduction to Microcontrollers 3

Embedded Processor (Microcontroller)

❚ Processor optimized for low cost
❙ No cache
❙ Small memory
❙ No disks
❙ 4 bit/8 bit/16 bit
❙ No FP
❙ No complicated datapath
❙ Multicycle instruction interpretation
❙ Simple/no operating system
❙ Programs are static

❚ Low performance
❙ 1 MIPS is enough if 1 ms is the time scale

❚ Integrate on a single chip



CSE 477 Introduction to Microcontrollers 4

General-purpose processor

❚ Programmed by user
❚ New applications are developed routinely
❚ General-purpose

❙ must handle a wide ranging variety of applications
❚ Interacts with environment through memory

❙ all devices communicate through memory
❙ DMA operations between disk and I/O devices
❙ dual-ported memory (as for display screen)
❙ oblivious to passage of time (takes all the time it needs)



CSE 477 Introduction to Microcontrollers 5

Embedded processors

❚ Programmed once by manufacturer of system
❚ Executes a single program (or a limited suite) with few 

parameters
❚ Task-specific

❙ can be optimized for specific application
❚ Interacts with environment in many ways

❙ direct sensing and control of signal wires
❙ communication protocols to environment and other devices
❙ real-time interactions and constraints



CSE 477 Introduction to Microcontrollers 6

CPU Memory
Display
(with 

dual-port 
video RAM)

Disk
I/O

(serial line, 
keyboard, 

mouse)

Network
Interface

standard interfaces

system bus

all the parts around the 
processor are usually required

Typical general-purpose architecture



CSE 477 Introduction to Microcontrollers 7

Micro-controller

ROM
I/O

Interface RAM custom 
logic

medium-speed
interactions

high-speed
interactions

standard interface
any of the parts around the
micro-controller are optional

Typical task-specific architecture



CSE 477 Introduction to Microcontrollers 8

How does this change things?

❚ Sense and control of environment
❙ processor must be able to “read” and “write” individual signal wires
❙ controls I/O devices directly

❚ Program has to do everything
❙ sense input bits
❙ change output bits
❙ do computation
❙ measure time

❘ many applications require precise spacing of events
❚ Problems with this

❙ Precise timing?
❙ Too slow?



CSE 477 Introduction to Microcontrollers 9

Connecting to inputs/outputs

❚ Map external wire to a bit of a variable (memory or register)
❙ if (a & 1) . . .
❙ X = 2;



CSE 477 Introduction to Microcontrollers 10

Example Problem: Accelerometer Interface

❚ Accelerometer output has one wire!
❙ Acceleration coded as the duty cycle

❘ pulse-width/cycle-length
• 20% = -128
• 80% = +127

❘ cycle time = 10ms
❚ Write a C program that measures the acceleration

❙ Input is low-order bit of variable X
❙ Assign result to variable Z
❙ Make up whatever you need



CSE 477 Introduction to Microcontrollers 11

RD
WR

WAIT

ADDR

DATA

CPU
OE

IN

OUT

from environment

to data bus
RD

decoder ADDR

Memory-mapped inputs

❚ Map external wire to a bit in the address space
of the processor

❚ External register buffers values coming
from environment
❙ map register into address space
❙ decoder needed to select register for reading
❙ output enable (OE) so that many registers can use the same data bus



CSE 477 Introduction to Microcontrollers 12

RD
WR

WAIT

ADDR

DATA

Micro-
processor

EN

IN

OUT

DATA

WR
decoder

ADDR

to environment

Memory-mapped outputs

❚ Map external wire to a bit in the address space
of the processor

❚ Connect output of memory-mapped register
to environment
❙ map register into address space
❙ decoder need to select register for writing (holds value indefinitely)
❙ input enable (EN) so that many registers can use the same data bus



CSE 477 Introduction to Microcontrollers 13

On-chip support for communication

❚ Processor may not be fast enough
❚ Offload standard protocols
❚ Built-in device drivers

❙ for common communication protocols
❙ serial-line protocols most common as they require few pins

❚ e.g. RS-232 serial interface
❙ special registers in memory space for interaction

❚ Increases level of integration
❙ pull external devices on-chip

❘ must be standard
❙ eliminate need for shared memory or system bus



CSE 477 Introduction to Microcontrollers 14

Measuring Time

❚ Keep track of detailed timing of each instruction's execution
❙ highly dependent on code
❙ hard to use with compilers
❙ not enough control over code generation
❙ interactions with caches/instruction-buffers

❚ Loops to implement delays
❙ keep track of time in counters
❙ keeps processor busy counting and not doing other useful things

❚ Real-time clock
❙ sample at different points in the program
❙ simple difference to measure time delay



CSE 477 Introduction to Microcontrollers 15

Timers

❚ Separate and parallel counting unit(s)
❙ co-processor to microprocessor
❙ does not require microprocessor intervention
❙ in simple case, like a real-time clock

❘ set timer/read timer
❙ interrupt generated when expired

❚ More interesting timer units
❙ self reloading timers for regular interrupts
❙ pre-scaling for measuring larger times
❙ started by external events



CSE 477 Introduction to Microcontrollers 16

Input/output events

❚ Input capture
❙ record precise time when input event occurred
❙ to be used in later handling of event

❚ Output compare
❙ set output to happen at a point in the future
❙ reactive outputs – set output to happen a pre-defined

time after some input
❙ processor can go on to do other things in the meantime



CSE 477 Introduction to Microcontrollers 17

Example Microcontroller: 8051

❚ Very old, very common and very cheap microcontroller
❙ Lots of variants

❚ Review online documentation
❙ learn how to read documentation

❚ Instruction set
❙ instruction capabilities
❙ timing

❚ Special registers and integrated I/O devices
❙ I/O ports
❙ serial interface

❚ Interrupt organization
❚ Memory space and its allocation
❚ Timers



CSE 477 Introduction to Microcontrollers 18

Why the 8051?

❚ We have a synthesizable core that works
❚ We have a good compiler/debugger

❙ very common microcontroller with simple instruction set
❙ lots of features
❙ lots of alternatives
❙ lots of support and resources
❙ good tools available: we will use the Keil software

❘ Assembler
❘ C compiler
❘ Debugger

❙ we will use the C compiler mostly
❘ requires a good understanding of the 8051 architecture


