[1SS wARE

8051/251 Evaluation Kit

Getting Started with the 8051 and MCS® 251
Microcontroller Development Tools

User’'s Guide 11.97

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

© Copyright 1990-1998 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.

Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.

IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.

Intel®, MCS® 51, MCS® 251, ASM-51°, and PL/M-51® are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

8051/251 Evaluation Kit

Preface

This manual is an introduction to the Keil Software 8051 and MCS® 251
microcontroller software development tools. It introduces new users and
interested readers to our product line. With nothing more than this book, you
should be able to successfully run and use our tools. This user’s guide contains
the following chapters.

offer for the 8051 and 251 microcontrollers. Read this chapter to determine
which product provides the tools you need.

development tools including the C compiler, assembler, debugger, and integrated
development environment.

development tools including the C compiler, assembler, debugger, and integrated
development environment.

can use to aid in development and debugging. Our evaluation boards for the
80C517A and 80C251SB and our EPROM emulator are discussed.

real-time operating systems. This chapter provides an overview of multitasking
systems, why they are desirable, and how they are used.

for our 8051 and 251 development tools.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 8051 and MCS® 251 microcontrollers.

Preface

Document Conventions

This document uses the following conventions:

SEMIES

README.TXT

Couri er

Variables

Elements that
repeat...

Omitted code

|[Optional Items]
{ optl | opt2 }

Keys

Point
Click

Drag

Double-Click

Description ‘

Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the
MS-DOS command prompt. This text usually represents commands that
you must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project
file name.

Occasionally, italics are also used to emphasize words in the text.
Ellipses (...) are used to indicate an item that may be repeated.

Vertical ellipses are used in source code listings to indicate that a
fragment of the program is omitted. For example:

void main (void) {

while (1);

Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST. C PRINT [(filenane) |

Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all of
the choices and the vertical bars separate the choices. One item in the list
must be selected.

Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Move the mouse until the mouse pointer rests on the item desired.

Quickly press and release a mouse button while pointing at the item to be
selected.

Press the left mouse button while on a selected item. Then, hold the
button down while moving the mouse. When the item to be selected is at
the desired position, release the button.

Click the mouse button twice in rapid succession.

8051/251 Evaluation Kit

Contents

:Chapter 1. _Introduction.....

Manual Tpp'ics

1
[P I PO R

1 Evaluation and Demo Kits....

':_;I'yp‘e‘s_qf‘gg_gis_. ... 2

AEEEEEEREEEEEE R R R AR R R R R R AR R R R R R R R R R R R R R R R EEEE R R R R R R R R R EEEES

1 Changes to the DoCUMENtationoooovnsiii 3!

1 System Requirements
. .Backing Up Your Disks _.....

L Installing the Software ..

+ Directory Structure .-
 Environment Setfings ... oo

:_'I mproving System Performance

_Chapter. 3, 8051/251 Product Line

L_8p.5'1"D§y§lggrp§g£ 00l KIS, 13,

L.2.5.1"D_ez_y§_lggm$g£ 001 KIS 17,

U SUDSCIIPEION KIS .vviiviiiviiitic ittt ettt st stae st te e sae e e st e e eresesreesenasssbeseereeanres

8051 Microcontroller Family. ..o 23!

:_(_353_1_Qp£i_r’r_1i_z_ir_19_c_Q_rggs__C_qrgpi_lgg._. et res
1 A51 Macro Assembler.....................

r-

"BL51 Code Banking Linker/Locator 43
1 OC51 Banked Object File Converter............. e esares 471

E@H@i .O.tlj.eg!'ﬂ@s p.o.n.v.e." t.e.r.' SuEEE

VLIBSL Library MaAnAQEEc..cocuveeiuiieiieiitieeseeeeieeseessteesvessabassnaeesabasaveesbasaveesrens 47

$. 251 Micraconiroller Family

C
+ C251 Optimizing C Cross Compiler

>
N
&)
[N
<
QDD
(@]
-
o
>
(92}
w
D
3
=
@D
-

hapter, 6. Using the 8051/251 tools

TG SV 0N BN (50006 s s

| e, R i i e o

ViISION IDE OVEIVIBWc..viiivieieiicctie et etieetieesteeesteesaveseseeesbtesssesesseesssenesseessnenesens

Contents

HELLO: Your First 8051/251 C Program...........ooovieosissiies i 81,

1
1
TR ATLAw AEEEEREEEEEE R
1

M-E-A-\§9-R-E A:R_e_mg!e_ MQals.u.rf"En.e.n:[.s.)ﬁs.tgr.n.'.".".“.“.“.“.“.".".' sEEEEEssEEEEEEsmmE® '-8-8-I

:'_-BADCODE? “An Eiample with Syntax Errors

« Chapter 7. Hardware Products ..o 1

B]

" PrOROM EPROM EMUIBIOT vvvovvorererersesrareceeeeeermareeeceeeerprmeceeserereseseeererersis 1071

i MCB517A EValuation BOArd. ...
1 MCB251SB Evaluation Board......................

hapter 8. Real-Time Kernels

- rEEERREEEEEEE R R A AR R

Chapter 9. Command Reference ... 121

I---'L'I.'I. . T R R R - RR

U AS1/A251 MaCr0 ASSEMDIETS........cvevveeveiiiietieteeiieieeteeteeteeteeeeeieeeet e e etaeeeereereseeas 121,
LCE1/C25T COMPIIET ..o b e 122

T NS
1 L251 Linker/Locator

+ OH51 Object-Hex CONVEMer v ovonevsvsrroreressareresessaseseaasase L]
y OH251 kaj_egg—_l—le_{ Converter ...

8051/251 Evaluation Kit 1

Chapter 1. Introduction

Thank you for allowing Keil Software to provide you with software development
tools for the 8051 and 251 family of microprocessors. With our tools, you can
generate embedded applications for the multitude of 8051 and 251 derivatives.
Our 8051 and 251 development tools are listed below:

m C51/C251 Optimizing C Cross Compiler,

s A51/A251 Macro Assembler,

m 8051/251 Utilities (linker, object file converter, library manager),
m dScope for Windows™ Source-Level Debugger/Simulator,

= pVision for Windows™ Integrated Development Environment.

L L L L Y) g i i ———

more information about these products.

Our tools are designed for the professional software developer, but any level of
programmer can use them to get the most out of the 8051 and 251 hardware.

Manual Topics

This manual discusses a number of topics including how to:

= Use the 8051 development tools (see “Chapter 4. 8051 Development ToolsY
on page 23},

Chapter 1. Introduction

If you want to get started immediately, you may do so by installing the software
(refer to “Chapter 2. Installation® on page 7} and running the sample programs
(refer to “Chapter 6. Using the 8051/251 tools? on page 63). This is all you

need to do to begin using this kit.

Evaluation and Demo Kits

Keil Software provides two kits that let you evaluate our tools.

The 8051/251 Demo Kit includes demonstration versions of our tools. The tools
in the Demo Kit do not generate actual object code. They generate listing files
where you can see the code generated by the compiler and other tools.

The 8051/251 Evaluation Kit includes evaluation versions of our tools. The
tools in the Evaluation Kit let you generate applications up to 2 Kbytes in size.
You may use this kit to evaluate the effectiveness of our tools and to generate
small target applications.

Both kits include this user’s guide and software. This user’s guide is also
included in each of our tool Kits.

Types of Users

This manual addresses three types of users: evaluation users, new users, and
experienced users.

Evaluation Users are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do
and how they perform. The evaluation package includes evaluation copies of the
development tools. You may use the included sample programs to get real-world
experience with our 8051 and 251 development tools. Even if you are only a
evaluation user, take the time to read this manual. It explains how to install the
software, provides you with an overview of the development tools, and
introduces the sample programs.

New Users are those users who are purchasing our 8051 development tools for
the first time. The included software provides you with the latest development

8051/251 Evaluation Kit 3

tool versions as well as sample programs. If you are new to the 8051 or 251 or
the tools, take the time to review the sample programs described in this manual.
This manual provides a quick tutorial and helps new or inexperienced users
quickly get started with the tools.

Experienced Users are those users who have previously used our 8051
development tools and are now upgrading to the latest 8051 or 251 tools. The
software included with a product upgrade contains the latest development tools,
the sample programs, and a full set of manuals.

Changes to the Documentation

Last minute changes and corrections to the software and manuals are listed in the
README.TXT file which is included in the root directory of your installation.
Take the time to read this file to determine if there are any changes that may
impact your installation.

Requesting Assistance

We are dedicated to providing you with the best embedded development tools
and documentation available. If you have suggestions or comments regarding
any of the printed manuals accompanying this product, please contact us. If you
think you have discovered a problem with the software, do the following before
calling technical support.

1. Read the sections in this manual that pertain to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.

3. lIsolate the problem to determine if it is a problem with the assembler,
compiler, linker, library manager, or another development tool.

4. Isolate software problems by reducing your code to a few lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group. If you contact us by fax, be sure to include your
name, your product serial number and version number, and telephone numbers
(voice and fax) where we can reach you.

Chapter 1. Introduction

Try to be as detailed as possible when describing the problem you are having.
The more descriptive your example, the faster we can find a solution. If you
have a one-page code example demonstrating the problem, please fax it to us.
However, please try not send long listings as this slows down our response.

8051/251 Evaluation Kit 5

8051/251 Evaluation Kit 7

Chapter 2. Installation

This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you
must do the following:

= Verify that your computer system meets the minimum requirements.

m Make a copy of the installation diskette for backup purposes.

NOTE

This chapter refers to various MS-DOS commands which may be used to
customize your operating environment. The SET and PATH commands, for
example, are used to initialize environment variables used by the compiler and
utilities. If you are not familiar with these commands and other MS-DOS
operations mentioned in this chapter, please refer to your DOS user’s guide.

System Requirements

There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

= 100% IBM compatible 386 or higher PC,
= Windows 3.1 or higher,

s 4 MB RAM minimum,

m Hard disk with 6 MB free disk space.

For our DOS-based tools, you must have the following:

= 100% IBM compatible 386 or higher PC with 640 KB RAM,
= MS-DOS Version 3.1 or higher,
m Hard disk with 6 MB free disk space.

Chapter 2. Installation

The C compiler and utilities require that you have at least 20 files and 20 buffers
defined in your conric.sys file. Additionally, you need enough environment

Your conric.sys file should look similar to the following:

BUFFERS=20
FI LES=20
SHELL=C: \ COMWAND. COM / e: 1024 /p

If you receive the message Qut of environment space from DOS, you can
increase the amount of environment space by increasing the number 1024 in the
above example. Refer to your DOS user’s guide for more information.

Backing Up Your Disks

We strongly suggest that you make a backup copy of the installation diskettes
using the DOS copy or piskcory commands. Then, use the backup disks to
install the software. Be sure to store the original disks in a safe place in case
your backups are lost or damaged.

Installing the Software

All of our products come with an installation program which allows easy
installation of our software.

Installing DOS-Based Products

To install DOS-based products, insert the first product diskette into Drive A and
enter the following command line at the DOS prompt:

A: | NSTALL

Then, follow the instructions displayed by the installation program.

8051/251 Evaluation Kit

Installing Windows-Based Products

To install Windows-based products...

m Insert the first product diskette into Drive A,

m Select the Run... command from the File menu in the Program Manager,
m Enter A:SETUP at the Command Line prompt,

m Select the OK button.

Then, follow the instructions displayed by the installation program.

Directory Structure

The installation program copies the development tools into subdirectories of the
following base directories. The directory used depends on the kit being

installed.

Directory Description

\C51 8051 development tools.
\C51EVAL 8051 evaluation tools.
\C251 251 development tools.
\C251EVAL 251 evaluation tools.

After creating the appropriate directory, the installation program copies the
development tools into the subdirectories listed in the following table.

Subdirectory Description ‘
..\ASM Assembler include files.

...\BIN Executable files.

...\DS51 dScope-51 for DOS IOF drivers.
...\EXAMPLES Sample applications.

.. \RTX51 RTX-51 Full files.

LARTX_TINY RTX-51 Tiny files.

..\INC C compiler include files.

...\LIB C compiler library files and startup code.
...\MON51 Target monitor files.

..\TS51 tScope-51 for DOS |OT drivers.

10

Chapter 2. Installation

This table lists a complete installation that includes the entire line of 8051 development
tools. Your installation may vary depending on the products you purchased.

Environment Settings

The compiler and utilities require entries in the DOS environment table that
specify the path to include files and libraries. In addition, you must include the
..\BIN\ directory in your PATH.

The following table lists the environment variables, their default paths, and a
brief description.

Variable Path Description ‘

PATH \C51\BIN Specifies the path of the 8051 development tools.

PATH \C51EVAL\BIN Specifies the path of the 8051 evaluation tools.

PATH \C251\BIN Specifies the path of the 251 development tools.

PATH \C251EVAL\BIN Specifies the path of the 251 evaluation tools.

TMP Specifies the path for temporary files generated. For best

performance, the path specified should be a RAM disk. If this
environment variable is specified, the path must exist. If the
path does not exist, the tools abort reporting a fatal error.

C51INC \C51\INC Specifies the path where the standard C51 compiler include
files are located.

C251INC \C251\INC Specifies the path where the standard C251 compiler include
files are located.

C51LIB \C51\LIB Specifies the path where the standard C51 compiler library files
are located.

C251LIB \C251\LIB Specifies the path where the standard C251 compiler library

files are located.

NOTE

This manual makes references to programs and files in the \cs1\... directory.
This directory is equivalent to the \cs1EVAL\..., \c251\..., and \C251EVAL\...
directories.

8051/251 Evaluation Kit 11

Typically, environment settings are automatically installed in your
AUTOEXEC.BAT file by the installation program. If you wish to put these settings
in a separate batch file, the environment settings must be entered as follows:

8051 Development Tools 8051 Evaluation Tools

PATH=C:\ C51\BI N; . . . PATH=C: \ C51EVAL\BIN; . . .
SET G511 NC=C:\ C51\ I NC SET C511 NC=C:\ C51EVAL\ I NC
SET C51LIB=C:\C51\LIB SET C51LI B=C:\ C51EVAL\ LI B

251 Development Tools 251 Evaluation Tools

PATH=C: \ C251\ BI N, . . . PATH=C: \ C251EVAL\ BI N, . . .

SET C2511 NC=C: \ C251\ | NC SET C2511 NC=C: \ C251EVAL\ | NC
SET C251LI B=C:\ C251\ LI B SET C251LI B=C:\ C251EVAL\ LI B

Improving System Performance

There are two methods you can employ to improve performance of the C51
compiler and utilities. These techniques are generic and should help boost
performance of most applications. You may:

m Provide a RAM disk for the compiler and utilities to use for temporary files,
m Use a disk cache to store the most recently accessed disk files.

Using a RAM Disk

If your computer has sufficient extended or expanded memory available, you
should consider using a RAM disk. A RAM disk is a memory-based disk
emulator. Because the contents of a RAM disk are stored in RAM, access is
very fast.

If you are using a RAM disk, you can set the value of the Tmp environment
variables to the drive name of the RAM disk. This speeds up the execution of
the many of the tools and utilities because they can use the RAM disk for
temporary files.

A number of RAM disk software packages are available. RAMDRIVE.sYs and
vDIsk.sys are the names of the RAM disk programs that are most commonly
shipped with DOS. Refer to your DOS manual to learn how to install these
programs.

12 Chapter 2. Installation

Using a Disk Cache

A disk cache utilizes a large memory pool to temporarily store information read
from disk. When the computer accesses the disk, it first checks the cache to see
if the desired information is already in the cache. If it is, the information is read
from the cache memory instead of from the disk. This is significantly faster than
waiting for the disk drive to read the information.

Typically, software development involves an edit-compile-edit-compile... cycle.
In these situations, a disk cache improves the performance of your editor,
assembler, compiler, and linker. The editor, the compiler, source file, and object
file can all be held in the cache, and disk accesses are kept to a minimum.

Version 5.0 and Version 6.0 of MS-DOS both come with a disk-caching utility
called smARTDRvV.SYS. Refer to your DOS manual to learn how to install and use
this program.

8051/251 Evaluation Kit 13

Chapter 3. 8051/251 Product Line

Keil Software provides the premier 8051 and 251 development tools in the
industry. To help you become familiar with how we distribute our tools, we
would like to introduce the concept of a tool Kit.

A tool kit is comprised of several application programs that you use to create
your 8051 application. You may use an assembler to assemble your 8051
assembly program, you may use a compiler to compile your C source code into
an object file, and you may use a linker to create an absolute object module
suitable for your in-circuit emulator.

While it makes little sense to have a compiler without a linker, it also makes
little sense to have a linker without a compiler or assembler. Therefore, our
tools are packaged into various Kits.

Our 8051 kits are described below in the “B051 Development Tool Kits? section.

Our 251 kits are described in the “P51 Development Tool Kits” section on page
17

8051 Development Tool Kits

When you use the Keil Software tools, the 8051 project development cycle is
roughly the same as for any software development project.

1. Create source files in C or assembly.

2. Compile or assemble source files.

3. Correct errors in source files.

4. Link object files from compiler and assembler.

5. Test linked application.

Tool Kit Overview

The development cycle described above may be best illustrated by a block
diagram (shown on the following page) of the complete 8051 tool set.

14 Chapter 3. 8051/251 Product Line

uVision/51 As shown in this figure, files are
created by the pVision/51 IDE and
then passed to the C51 compiler or

Ab51 assembler. The compiler and
C51_ AL BRI assembler process source files and
Compiler Assembler create relocatable object files.

Object files created by the compiler
and assembler may be used by the
LIB51 library manager to create a
library. A library is a specially
formatted, ordered program collection

- ; of object modules that the linker can
BLE Linlkeer ol Clop e el process. When the linker processes a
library, only the object modules in the

dScope-51 Emulator & library that are necessary for program
Source Leve -Debugger | PROMProgrammer— sraqtinn are ysed.

RTX51

Real-Time
Operating
System

LIB51

Library
Manager

Library

Object files created by the compiler
and assembler and library files
created by the library manager are
processed by the linker to create an
absolute object module. An absolute object file or module is an object file with
no relocatable code. All the code in an absolute object file resides at fixed
locations.

CPU &

Peripheral
Simulator

Monitor-51

Target Debugging

The absolute object file created by the linker may be used to program EPROM or
other memory devices. The absolute object module may also be used with the
dScope-51 debugger/simulator or with an in-circuit emulator.

The dScope-51 source level debugger/simulator is ideally suited for fast, reliable
high-level-language program debugging. The debugger contains a high-speed
simulator and a target debugger that let you simulate an entire 8051 system
including on-chip peripherals. By loading specific 1/0 drivers, you can simulate
the attributes and peripherals of a variety of 8051 derivatives. In conjunction
with Monitor-51, the debugger is even able to do source-level debugging on your
target hardware.

The RTX-51 real-time operating system is a multitasking kernel for the 8051
family. The RTX-51 real-time kernel simplifies the system design,
programming, and debugging of complex applications where fast reaction to
time critical events is essential. The kernel is fully integrated into the C51
compiler and is easy to use. Task description tables and operating system

8051/251 Evaluation Kit 15

consistency are automatically controlled by the BL51 code banking
linker/locator.

Tool Kit Introduction

The preceding diagram shows the full extent of the Keil Software 8051
development tools. The tools listed in this diagram comprise the professional
developer’s kit described on the following pages. In addition to the professional
kit, Keil Software provides a number of other tool Kits for the 8051 developer.
To best illustrate what is included in each tool kit, we describe the kits in
decreasing order of capability. The most capable kit, the professional
developer’s kit is described first.

PK51—C51 Professional Developer’s Kit

The PK51 C51 professional developer’s kit includes everything the professional
8051 developer needs to create sophisticated embedded applications. This tool
kit includes the following components:

m C51 Optimizing C Compiler,

m A51 Macro Assembler,

= BL51 Code Banking Linker/Locator,

s OC51 Banked Object File Converter,

s OH51 Object-Hex Converter,

s LIB51 Library Manager,

m dScope-51 Simulator/Debugger,

m tScope-51 Target Debugger,

= Monitor-51 ROM Monitor and Terminal Program,

= Integrated Development Environment,

m RTX-51 Tiny Real-Time Operating System.

In addition, the professional developer’s kit includes the following tools for
Windows users:

m dScope-51 Simulator/Debugger for Windows,

16

Chapter 3. 8051/251 Product Line

m MVision/51 Integrated Development Environment for Windows.

The professional developer’s kit can be configured for all 8051 derivatives. The
tools included in this kit run under DOS on any 100% IBM PC 386 or higher
compatible computer.

DK51—C51 Developer’s Kit

The DK51 C51 developer’s kit is designed for users who need a complete
DOS-based development system for the 8051. This kit lets you create
sophisticated embedded applications using a DOS-based development platform.
This tool kit includes the following components:

m C51 Optimizing C Compiler,

m A51 Macro Assembler,

= BL51 Code Banking Linker/Locator,

= OC51 Banked Object File Converter,

s OH51 Object-Hex Converter,

m LIB51 Library Manager,

m dScope-51 Simulator/Debugger,

m tScope-51 Target Debugger,

= Monitor-51 ROM Monitor and Terminal Program,

m Integrated Development Environment.

The developer’s kit can be configured for all 8051 derivatives. The tools
included in this kit run under DOS on any 100% compatible IBM PC 386 or
higher computer.

CA51—C51 Compiler Kit

The CA51 C51 compiler kit is the best choice for developers who need a C
compiler but not a debugging system. This kit lets you create 8051 C
applications for your target hardware. The compiler kit can be configured for all
8051 derivatives. The tools included in this kit run under DOS on any

100% compatible IBM PC 386 or higher computer.

8051/251 Evaluation Kit 17

A51—A51 Macro Assembler Kit

The A51 assembler kit includes our 8051 assembler and all the utilities you need
to begin creating 8051 application. The assembler kit is easily configured for all
8051 derivatives. The tools included in this kit run under DOS on any

100% compatible IBM PC 386 or higher computer.

DS51—dScope-51 Simulator Kit

The DS51 simulator kit provides a debugger/simulator for use with the A51
assembler kit and the CA51 compiler kit. With this kit, you can quickly locate
problems in your 8051 application because the simulator lets you step through
your code one instruction at a time. You can easily view program variables,
SFRs, and memory locations. This tool kit includes the following components:

m dScope-51 Simulator/Debugger,
m tScope-51 Target Debugger,

= Monitor-51 ROM Monitor and Terminal Program.

The simulator kit comes with drivers for most popular 8051 derivatives. The
tools included in this kit run under DOS on any 100% compatible IBM PC 386
or higher computer.

FR51—RTX-51 Full Real-Time Kernel

The RTX-51 Full kernel is a real-time operating system for the 8051
microcontroller. RTX-51 Full provides a superset of the features found in
RTX-51 Tiny and also includes BITBUS and CAN communication protocol

interface libraries. Refer to “Chapter 8. Real-Time Kernels’ on page 111 for

more information about RTX-51 Tiny.

251 Development Tool Kits

Our 251 development tool set is very similar in function to our 8051 tools set.
Where applicable, we have kept the names of the kits the same. The
development process for a 251 application is much the same as it is for an 8051
application. The differences are the names of the tools used to generate 251

18 Chapter 3. 8051/251 Product Line

code. Following are descriptions of the 251 development tool kits that we
provide.

DK251—C251 Developer’s Kit for Windows

The DK251 C251 developer’s kit is designed for users who need a complete
development system for the 251. This kit lets you create sophisticated embedded
applications using a Windows-based development platform. This tool kit
includes the following components:

m C251 Optimizing C Compiler,

m A251 Macro Assembler,

m L251 Linker/Locator,

= OH251 Object-Hex Converter,

m LIB251 Library Manager,

m dScope-251 Simulator/Debugger for Windows,

a Monitor-251 ROM Monitor,

m MVision/251 Integrated Development Environment for Windows.

The developer’s kit can be configured for all modes of the 251. The tools
included in this kit run under Windows on any 100% IBM PC 386 or higher
compatible computer.

CA251—C251 Compiler Kit for Windows

The CA251 compiler kit is the best choice for developers who need a C compiler
but not a debugging system. This kit lets you create 251 C and assembly
applications for your target hardware. This tool kit includes the following
components:

m C251 Optimizing C Compiler,

n A251 Macro Assembler,

m L251 Linker/Locator,

= OH251 Object-Hex Converter,

m LIB251 Library Manager,

8051/251 Evaluation Kit 19

m MVision/251 Integrated Development Environment for Windows.

The compiler kit can be configured for every mode of the 251. The tools
included in this kit run under Windows on any 100% IBM PC 386 or higher
compatible computer.

A251—A251 Macro Assembler Kit for Windows

The A251 assembler kit includes our 251 assembler and all the utilities you need
to begin creating 251 application. This tool kit includes the following
components:

m A251 Macro Assembler,

m L251 Linker/Locator,

= OH251 Object-Hex Converter,
m LIB251 Library Manager,

m MVision/251 Integrated Development Environment for Windows.

The tools included in this kit run under Windows on any 100% IBM PC 386 or
higher compatible computer.

DS251—dScope-251 Simulator Kit for Windows

The DS251 simulator kit is provides a Windows-based debugger/simulator for
the A251 assembler kit and the CA251 compiler kit. With this kit, you can
quickly locate problems in your 251 application because the simulator lets you
step through your code one instruction at a time. You can easily view program
variables, SFRs, and memory locations. This tool kit includes the following
components:

m dScope-251 Simulator/Debugger for Windows,
= Monitor-251 ROM Monitor.

The simulator kit comes with drivers for most popular 8051 and 251 derivatives.
The tools included in this kit run under Windows on any 100% IBM PC 386 or
higher compatible computer.

20 Chapter 3. 8051/251 Product Line

FR251—RTX-251 Full Real-Time Kernel

The RTX-251 Full kernel is a real-time operating system for the 251
microcontroller. RTX-251 Full provides a superset of the features found in
RTX-251 Tiny and is comparable to the RTX-51 kernel for the 8051.

Subscription Kits

To best support users who develop 8051 and 251 applications, we have added
the 8051/251 subscription Kits to our product line. The subscription kits provide
the 8051 and 251 development tools as well as one year of free software
upgrades.

SDK251—8051/251 Developer’s Kit Subscription

The SDK251 subscription includes all the components of the DK51 developer’s
kit and the DK251 developer’s kit. This kit provides a complete solution for
8051 developers who plan to use the 251. The following components are
included in this kit.

m C51 Optimizing C Compiler,

m C251 Optimizing C Compiler,

m A51 Macro Assembler,

n A251 Macro Assembler,

m BL51 Code Banking Linker/Locator,

m L251 Linker/Locator,

= OC51 Banked Object File Converter,

s OH51 Object-Hex Converter,

= OH251 Object-Hex Converter,

m LIB51 Library Manager,

m LIB251 Library Manager,

m dScope-51 Simulator/Debugger for DOS,

m tScope-51 Target Debugger for DOS,

= Monitor-51 ROM Monitor and Terminal Program,

8051/251 Evaluation Kit 21

m dScope-251 Simulator/Debugger for Windows,
a Monitor-251 ROM Monitor,

m MVision/251 Integrated Development Environment for Windows.

SCA251—8051/251 Compiler Kit Subscription

The SCA251 subscription includes all the components of the CA51 compiler kit
and the CA251 compiler kit. This kit is the best choice for 8051 developers who
plan to use the 251 but who don’t need a debugging solution. The following
components are included in this kit.

m C51 Optimizing C Compiler,

m C251 Optimizing C Compiler,

m A51 Macro Assembler,

m A251 Macro Assembler,

= BL51 Code Banking Linker/Locator,
m L251 Linker/Locator,

= OC51 Banked Object File Converter,
s OH51 Object-Hex Converter,

m OH251 Object-Hex Converter,

m LIB51 Library Manager,

m LIB251 Library Manager,

m MVision/251 Integrated Development Environment for Windows.

22

Chapter 3. 8051/251 Product Line

Tool Kit Comparison Chart

The following table provides a check list of the features found in each of our
development kits. Part numbers are listed across the top and features are listed
down the side. Use this cross reference to select the kit that best suits your
needs.

Support PK51 DK51 A51 DK251 CA251 A251 SDK251SCA251
8051 v v v v v
251 v v v v v
Assembler v v v v v v v v
Compiler v v v v v v
Simulator v v v v
IDE v v v v v v v v
RTX v
Windows v v v v v v
DOS v v v v

8051/251 Evaluation Kit 23

Chapter 4. 8051 Development Tools

This chapter discusses the features and advantages of the 8051 microprocessor
family and the development tools available from Keil Software. We have
designed our development tools to help you quickly and successfully complete
your job. For this reason, our tools are easy to use and are guaranteed to help
you achieve your design goals.

8051 Microcontroller Family

The 8051 has been available since the early 1980’s. With a wide variety of
outstanding features and peripherals, the 8051 CPU core is destined to see
service well into the next century. More than 200 different 8051 derivatives are
available today from a variety of chip vendors. More than half of all embedded
projects with a CPU use members of the 8051 microcontroller family. As an
embedded processor, the 8051 has no equal.

A typical 8051 family member contains the 8051 CPU core, data memory, code
memory, and some versatile peripheral functions. A flexible memory interface
lets you expand the capabilities of the 8051 using standard peripherals and
memory devices.

8051 Development Tools
Keil Software provides the following development tools for the 8051.:

= C51 Optimizing C Compiler (see page 24),

= A51 Macro Assembler (see page 41},

= BL51 Code Banking Linker/Locator (see page 43),
= OC51 Banked Object File Converter (see page 47),
= OH51 Object-Hex Converter (see page 47},

= LIB51 Library Manager (see page 47)

= dScope-51 for Windows (see page 47},

= UVision/51 for Windows (see page 48).

24

Chapter 4. 8051 Development Tools

8051/251 Product Line¥ on page 13.

NOTE

All of our 8051 tools utilize the Intel OMF51 object module format. The
development environment can be expanded with all Intel compatible tools such
as Intel PL/M-51 or iDCX-51 and with emulators from a wide range of
manufactures.

C51 Optimizing C Cross Compiler

The C programming language is a general-purpose programming language that
provides code efficiency, elements of structured programming, and a rich set of
operators. C is not a big language and is not designed for any one particular area
of application. Its generality, combined with its absence of restrictions, make C
a convenient and effective programming solution for a wide variety of software
tasks. Many applications can be solved more easily and efficiently with C than
with other more specialized languages.

The Keil Software C51 optimizing cross compiler for the MS-DOS operating
system is a complete implementation of the ANSI (American National Standards
Institute) standard for the C language. The C51 compiler generates code for the
8051 microprocessor but is not a universal C compiler adapted for the 8051
target. Itis a ground-up implementation dedicated to generating extremely fast
and compact code for the 8051 microprocessor.

For most 8051 applications, the C51 compiler gives software developers the
flexibility of programming in C while matching the code efficiency and speed of
assembly language.

Using a high-level language like C has many advantages over assembly language
programming. For example:

= Knowledge of the processor instruction set is not required. A rudimentary
knowledge of the 8051’s memory architecture is desirable but not necessary.
m Register allocation and addressing mode details are managed by the compiler.

= The ability to combine variable selection with specific operations improves
program readability.

= Keywords and operational functions that more nearly resemble the human
thought process can be used.

8051/251 Evaluation Kit 25

C51 Language Extensions

The C51 compiler is an ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANSI standard. A number
of extensions to the C programming language are provided to support the

Program development and debugging times are dramatically reduced when
compared to assembly language programming.

The library files that are supplied provide many standard routines (such as
formatted output, data conversions, and floating-point arithmetic) that may be
incorporated into your application.

Existing routine can be reused in new programs by utilizing the modular
programming techniques available with C.

The C language is very portable and very popular. C compilers are available
for almost all target systems. Existing software investments can be quickly
and easily converted from or adapted to other processors or environments.

facilities of the 8051 microprocessor. The C51 compiler includes extensions for:

Data Types,

Memory Types,

Memory Models,

Pointers,

Reentrant Functions,

Interrupt Functions,

Real-Time Operating Systems,
Interfacing to PL/M and A51 source files.

The following sections briefly describe these extensions.

26 Chapter 4. 8051 Development Tools

Data Types

The C51 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays. Except as noted, you may use pointers to access these data types.

Data Type Value Range

bit 1 1 Oto1l

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647
unsigned long 32 4 0 to 4294967295

float 32 4 +1.175494E-38 to +3.402823E+38
shit T 1 Oto1l

sfr 8 1 0 to 255

sfri6 t 16 2 0 to 65535

T The bit, sbit, sfr, and sfr16 data types are specific to the 8051 hardware and the C51 and C251
compilers. The are not a part of ANSI C and cannot be accessed through pointers.

The sbit, sfr, and sfr16 data types are included to allow access to the special
function registers that are available on the 8051. For example, the declaration:
sfr PO = 0x80; declares the variable Po and assigns it the special function
register address of 0x80. This is the address of PORT 0 on the 8051.

The C51 compiler automatically converts between data types when the result
implies a different data type. For example, a bit variable used in an integer
assignment is converted to an integer. You can, of course, coerce a conversion
by using a type cast. In addition to data type conversions, sign extensions are
automatically carried out for signed variables.

Memory Types
The C51 compiler supports the architecture of the 8051 and its derivatives and

provides access to all memory areas of the 8051. Each variable may be
explicitly assigned to a specific memory space.

8051/251 Evaluation Kit 27

Memory Type Description ‘

code Program memory (64 Kbytes); accessed by opcode
MOVC @A+DPTR.

data Directly addressable internal data memory; fastest access to
variables (128 bytes).

idata Indirectly addressable internal data memory; accessed across the
full internal address space (256 bytes).

bdata Bit-addressable internal data memory; allows mixed bit and byte
access (16 bytes).

xdata External data memory (64 Kbytes); accessed by opcode
MOVX @DPTR.

pdata Paged (256 bytes) external data memory; accessed by opcode
MOVX @Rn.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, you should place frequently used
variables in internal data memory and less frequently used variables in external
data memory.

By including a memory type specifier in the variable declaration, you can specify
where variables are stored.

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration. For example:

char data varl;

char code text[] = "ENTER PARAMETER ";
unsi gned | ong xdata array[100];

float idata x,y, z;

unsi gned int pdata di mensi on;

unsi gned char xdata vector[10][4][4];
char bdata fl ags;

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables which cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
LARGE compiler control directives. These directives specify the memory
model to use for the compilation.

28

Chapter 4. 8051 Development Tools

Memory Models

The memory model determines the default memory type used for function
arguments, automatic variables, and variables declared with no explicit memory
type. You specify the memory model on the command line using the SMALL,
COMPACT, and LARGE control directives. By explicitly declaring a variable
with a memory type specifier, you may override the default memory type.

SMALL In this model, all variables default to the internal data memory of
the 8051. This is the same as if they were declared explicitly
using the data memory type specifier. In this memory model,
variable access is very efficient. However, all data objects, as
well as the stack must fit into the internal RAM. Stack size is
critical because the stack space used depends upon the nesting
depth of the various functions. Typically, if the BL51 code
banking linker/locator is configured to overlay variables in the
internal data memory, the small model is the best model to use.

COMPACT Using compact model, all variables default to one page of
external data memory. This is the same as if they were
explicitly declared using the pdata memory type specifier. This
memory model can accommodate a maximum of 256 bytes of
variables. The limitation is due to the addressing scheme used,
which is indirect through registers RO and R1. This memory
model is not as efficient as the small model, therefore, variable
access is not as fast. However, the compact model is faster than
the large model. The high byte of the address is usually set up
via port 2. The compiler does not set this port for you.

LARGE In large model, all variables default to external data memory.
This is the same as if they were explicitly declared using the
xdata memory type specifier. The data pointer (DPTR) is used
for addressing. Memory access through this data pointer is
inefficient, especially for variables with a length of two or more
bytes. This type of data access generates more code than the
small or compact models.

NOTE

You should always use the SMALL memory model. It generates the fastest,
tightest, and most efficient code. You can always explicitly specify the memory
area for variables. Move up in model size only if you are unable to make your
application fit or operate using SMALL model.

8051/251 Evaluation Kit 29

Pointers

The C51 compiler supports pointer declarations using the asterisk character
(“*”). You may use pointers to perform all operations available in standard C.
However, because of the unique architecture of the 8051 and its derivatives, the
C51 compiler supports two different types of pointers: memory specific pointers
and generic pointers.

Generic Pointers

Generic pointers are declared in the same way as standard C pointers. For
example:

char *s; /* string ptr */
int *nunmptr; /[* int ptr */
| ong *state; /* long ptr */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset.

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the library routines use these pointer types for this
reason. By using these generic untyped pointers, a function can access data
regardless of the memory in which it is stored.

Memory Specific Pointers

Memory specific pointers always include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *nunt ab; /* ptr to int(s) in xdata */
| ong code *pow ab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by untyped pointers is not needed by typed pointers. Typed pointers
can be stored using only one byte (idata, data, bdata, and pdata pointers) or
two bytes (code and xdata pointers).

30 Chapter 4. 8051 Development Tools

Comparison: Memory Specific & Generic Pointers

You can significantly accelerate an 8051 C program by using ‘memory specific’
pointers. The following sample program shows the differences in code & data
size and execution time for various pointer declarations.

Description Idata Pointer Xdata Pointer Generic Pointer ‘
Sample Program char idata *ip; char xdata *xp; char *p;
char val; char val; char val;
val = *ip; val = *xp; val = *p;
8051 Program Code MOV RO, ip MOV DPL, xp +1 MOV Rl,p + 2
Generated MOV val , @RO MOV DPH, xp MV R2,p + 1
MOV A @PTR MV R3, p
MOV val, A CALL CLDPTR
Pointer Size 1 byte data 2 bytes data 3 bytes data
Code Size 4 bytes code 9 bytes code 11 bytes code + Lib.
Execution Time 4 cycles 7 cycles 13 cycles

Reentrant Functions

A reentrant function can be shared by several processes at the same time. When
a reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, C51 functions
cannot be called recursively or in a fashion which causes reentrancy. The reason
for this limitation is that function arguments and local variables are stored in
fixed memory locations. The reentrant function attribute allows you to declare
functions that may be reentrant and, therefore, may be called recursively. For
example:

int calc (char i, int b) reentrant

{

int x;

x = table [i];
return (x * b);

}

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time

applications or in situations where interrupt code and non-interrupt code must

share a function.

For each reentrant function, a reentrant stack area is simulated in internal or
external memory depending on the memory model.

8051/251 Evaluation Kit 31

NOTE

By selecting the reentrant attribute on a function by function basis, you can
select the use of this attribute where it’s needed without making the entire
program reentrant. Making an entire program reentrant may cause it to be
larger and consume more memory.

Interrupt Functions

The C51 compiler provides you with a method of calling a C function when an
interrupt occurs. This support allows you to create interrupt service routines in
C. You need only be concerned with the interrupt number and register bank
selection. The compiler automatically generates the interrupt vector and entry
and exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. Additionally, you can specify the register bank used for that interrupt
with the using function attribute.

unsigned int interruptcnt;
unsi gned char second;

void tinmerO (void) interrupt 1 using 2 {

if (++interruptcnt == 4000) { /* count to 4000 */
second++; /* second counter */
interruptcnt = 0; /* clear int counter */

}
}

Parameter Passing

The C51 compiler passes up to three function arguments in CPU registers. This
significantly improves system performance since arguments do not have to be
written to and read from memory. Argument passing can be controlled with the
REGPARMS and NOREGPARMS control directives. The following table
lists the registers used for different arguments and data types.

Argument char, int, generic
Number 1-byte pointer 2-byte pointer pointer
1 R7 R6 & R7 R4 — R7 R1—R3

2 R5 R4 & R5

3 R3 R2 & R3

32

Chapter 4. 8051 Development Tools

If no registers are available for argument passing or too many arguments are
involved, fixed memory locations are used for those extra arguments.

Function Return Values

CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register Description

bit Carry Flag

char, unsigned char, 1-byte pointer R7

int, unsigned int, 2-byte pointer R6 & R7 MSB in R6, LSB in R7

long, unsigned long R4 — R7 MSB in R4, LSB in R7

float R4 — R7 32-Bit IEEE format

generic pointer R1 —R3 Memory type in R3, MSB R2, LSB
R1

Register Optimizing

Depending on program context, the C51 compiler allocates up to 7 CPU registers
for register variables. Any registers modified during function execution are
noted by the C51 compiler within each module. The linker/locator generates a
global, project-wide register file which contains information of all registers
altered by external functions. Consequently, the C51 compiler knows the
register used by each function in an application and can optimize the CPU
register allocation of each C function.

Real-Time Operating System Support

The C51 compiler integrates well with both the RTX-51 Full and RTX-51 Tiny
multitasking real-time operating systems. The task description tables are
generated and controlled during the link process. For more information about

on page 111

8051/251 Evaluation Kit 33

Interfacing to Assembly

You can easily access assembly routines from C and vice versa. Function
parameters are passed via CPU registers or, if the NOREGPARMS control is
used, via fixed memory locations. Values returned from functions are always
passed in CPU registers.

You can use the SRC directive to direct the C51 compiler to generate a file
ready to assemble with the A51 assembler instead of an object file. For example,
the following C source file:

unsi gned int asnfuncl (unsigned int arg){
return (1 + arg);

}

generates the following assembly output file when compiled using the SRC
directive.

?PR?_asnf unc1?ASML SEGVENT CODE

PUBLI C _asnfuncl
RSEG ?PR?_asnf unc1?ASML
USI NG 0

_asnfuncl:

; - Variable 'arg?00' assigned to Register 'R6/R7' ----
MV A R7 ; load LSB of the int
ADD A #01H ; add 1
MV R7,A ; put it back into R7
CLR A
ADDC A, R6 ; add carry & R6
MOV R6, A

?00001:
RET ; return result in R6/R7

You may use the #pragma asm and #pragma endasm preprocessor directives
to insert assembly instructions into your C source code.

Interfacing to PL/M-51

Intel’s PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface routines written in C to routines written in
PL/M-51. You can access PL/M-51 functions from C by declaring them with the
alien function type specifier. All public variables declared in the PL/M-51
module are available to your C programs. For example:

extern alien char plmfunc (int, char);

34 Chapter 4. 8051 Development Tools

Since the PL/M-51 compiler and the Keil Software tools all generate object files
in the OMF51 format, external symbols are resolved by the linker.

8051/251 Evaluation Kit 35

Code Optimizations

The C51 compiler is an aggressive optimizing compiler. This means that the
compiler takes certain steps to ensure that the code generated and output to the
object file is the most efficient (smaller and/or faster) code possible. The
compiler analyzes the generated code to produce the most efficient instruction
sequences. This ensures that your C program runs as quickly and effectively as
possible in the least amount of code space.

The C51 compiler provides six different levels of optimizing. Each increasing
level includes the optimizations of levels below it. The following is a list of all
optimizations currently performed by the C51 compiler.

General Optimizations

m Constant Folding: Several constant values occurring in an expression or
address calculation are combined as a single constant.

= Jump Optimizing: Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

m Dead Code Elimination: Code which cannot be reached (dead code) is
removed from the program.

m Register Variables: Automatic variables and function arguments are located
in registers whenever possible. No data memory space is reserved for these
variables.

m Parameter Passing Via Registers: A maximum of three function arguments
can be passed in registers.

m Global Common Subexpression Elimination: Identical subexpressions or
address calculations that occur multiple times in a function are recognized
and calculated only once whenever possible.

36 Chapter 4. 8051 Development Tools

8051-Specific Optimizations

m Peephole Optimization: Complex operations are replaced by simplified
operations when memory space or execution time can be saved as a result.

m Access Optimizing: Constants and variables are computed and included
directly in operations.

m Data Overlaying: Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit segments by the
BL51 code banking linker/locator.

m Case/Switch Optimizing: Depending upon their number, sequence, and
location, switch and case statements can be further optimized by using a
jump table or string of jumps.

Options for Code Generation
s OPTIMIZE(SIZE): Common C operations are replaced by subprograms.
Program code size is reduced at the expense of program speed.

s OPTIMIZE(SPEED): Common C operations are expanded in-line.
Program speed is increased at the expense of code size.

s NOAREGS: The C51 compiler no longer uses absolute register access.
Program code is independent of the register bank.

m NOREGPARMS: Parameter passing is always performed in local data
segments rather then dedicated registers. Program code created with this
#pragma is compatible to earlier versions of the C51 compiler, the PL/M-51
compiler, and the ASM-51 assembler.

Global Register Optimization

The C51 compiler provides support for application wide register optimization
which is also known as application register coloring. The following sample
program compares the code generated by C51 version 5.0 using application
register coloring to the code generated by C51 version 3.4 without application
register coloring.

With the application wide register optimization, the C compiler knows the
registers used by external functions. Registers which are not altered in external
functions can be used to hold register variables. The code generated by the C
compiler needs less data and code space and executes faster. In the following

8051/251 Evaluation Kit 37

example input and output are external functions, which require only a few
registers.

With Global Register Optimization Without Global Register Optimization
main () {
unsigned char i;
unsigned char a;
while (1) {
i = input (); /* get number of values */
?C0001: ?C0001:
LCALL i nput LCALL i nput
;- '1' assigned to 'R6' - MoV DPTR, #i
MoV R6, AR7 MoV A R7
MoV @PTR, A
do {
a = input (); /* get input value */
?C0005: ?C0005:
LCALL i nput LCALL i nput
;- 'a assigned to 'R7' - MoV DPTR, #a
MoV R5, AR7 MoV A R7
MOVX @PTR, A
output (a); /* output value */
LCALL _out put LCALL _out put
} while (--i); /* decrement values */
DINZ R6, 2C0005 MoV DPTR, #i
MOVX A, @PTR
DEC A
MOVX @PTR, A
INZ 200005
}
SIMP 200001 SIMP 200001
}
RET RET
Code Size: 18 Bytes Code Size: 30 Bytes ‘

Debugging

The C51 compiler uses the Intel Object Format (OMF51) for object files and
generates complete symbol information. Additionally, the compiler can include
all the necessary information such as; variable names, function names, line
numbers, and so on to allow detailed and thorough debugging and analysis with
dScope-51 or Intel compatible emulators. All Intel compatible emulators may be
used for program debugging. In addition, the OBJECTEXTEND control
directive embeds additional variable type information in the object file which
allows type-specific display of variables and structures when using certain
emulators. You should check with your emulator vendor to determine if it is

38 Chapter 4. 8051 Development Tools

compatible with the Intel OMF51 object module format and if it can accept Keil
object modules.

Library Routines

The C51 compiler includes seven different ANSI compile-time libraries which
are optimized for various functional requirements.

Library File Description ‘

C51S.LIB Small model library without floating-point arithmetic
C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic
C51FPC.LIB Compact model floating-point arithmetic library
C51L.LIB Large model library without floating-point arithmetic
C51FPL.LIB Large model floating-point arithmetic library
80C751.LIB Library for use with the Philips 8xC751 and derivatives.

Source code is provided for library modules that perform hardware-related 1/O
and is found in the \cs1\LIB directory. You may use these source files to help
you quickly adapt the library to perform 1/0 using any I/O device in your target.

Intrinsic Library Routines

The libraries included with the compiler include a number of routines that are
implemented as intrinsic functions. Non-intrinsic functions generate ACALL or
LCALL instructions to perform the library routine. Intrinsic functions generate
in-line code (which is faster and more efficient) to perform the library routine.

Intrinsic Function Description ‘
crol Rotate character left.

cror Rotate character right.

irol Rotate integer left.

iror Rotate integer right.

lrol Rotate long integer left.

lror Rotate long integer right.

nop No operation (8051 NOP instruction).

testbit Test and clear bit (8051 JBC instruction).

8051/251 Evaluation Kit 39

Listing File Example

The C51 compiler produces a listing file that contains source code, directive
information, an assembly listing, and a symbol table.

40 Chapter 4. 8051 Development Tools

C51 COWPILER V5.02, SAWPLE 07/01/95 08:00:00 PAGE 1 The C51 compiler produces a
listing file with page numbers

DOS C51 COWPI LER V5. 02, COWPI LATI ON OF MODULE SAMPLE as well as time and date of

OBJECT MODULE PLACED | N SAVPLE. OBJ

COVPI LER | NVOKED BY: C:\ C51\Bl M\ C51. EXE SAMPLE. C CODE the compilation. Remarks
about the compiler invocation
stnt |evel source and object file output are
#include <reg51.h> /* SFR definitions for 8051 */ displayed in this listing.

#include <stdio.h> /* standard i/o definitions */
#i nclude <ctype.h> /* defs for char conversion */

#define EOT Ox1A /* Control +Z signals EOT */ The listing includes a line

1

2

3

4

5

? void main (void) { number for each statement
8 1 unsi gned char c; and a nesting level for each
9 1 block enclosed within curly
10 1 /* setup serial port hdw (2400 Baud @2 Miz) */ braces (‘{* and }).

1 1 SCON = 0x52; /* SCON */

12 1 TMOD = 0x20; /* TMOD */

13 1 TCON = 0x69; /* TCON */

i;‘ i Ut = Bt frTHL Error messages and

16 1 while ((c = getchar ()) !'= EOF) { warning messages are

17 2 put char (toupper (c)); included in the listing file.
18 2 }

19 1 PO = 0; /* clear Qutput Port to signal ready */

20 1 }

ASSEMBLY LI STI NG OF GENERATED OBJECT CODE

; FUNCTI ON nai n (BEG N)

: SOURCE LINE # 7 The CODE compiler option
; SOURCE LINE # 11 includes an assembly code
0000 759852 MOV SCON, #052H listing in the listing file.
; SOURCE LINE # 12 Source line numbers are
0003 758920 MoV TMOD, #020H . LINE # 13 embedded within the
0006 758869 MOV TCON, #069H generated code.
; SOURCE LINE # 14
0009 758DF3 MoV THL, #0F3H
000C ?C0001:
; SOURCE LINE # 16
000C 120000 E LCALL get char
000F 8F00 R MoV c, R7
0011 EF MoV A R7
0012 F4 CPL A
0013 6008 Jz 200002
; SOURCE LINE # 17
0015 120000 E LCALL _toupper
0018 120000 E LCALL _putchar
; SOURCE LINE # 18
001B 80EF SIMP 200001
001D 2?C0002:
; SOURCE LINE # 19
001D E4 CLR A
001E F580 MoV PO, A
; SOURCE LINE # 20
0020 22 RET

; FUNCTI ON nai n (END)

MODULE | NFORMATI ON: STATI C OVERLAYABLE
CCDE S| ZE 33 seoo
CONSTANT S| ZE seoo seoo
XDATA S| ZE
PDATA SI ZE
DATA S| ZE

.- 1
| DATA SI ZE .- .- A memory overview provides

BI T SIZE o000 oooo information about the 8051
END OF MODULE | NFORVATI ON. memory areas that are used.

C51 COVPI LATI ON COVPLETE. 0 WARNING(S), 0 ERROR(S)

The total number of errors
and warnings is stated at
the end of the listing file.

8051/251 Evaluation Kit 41

A51 Macro Assembler

The A51 assembler is a macro assembler for the 8051 microcontroller family. It
translates symbolic assembly language mnemonics into relocatable object code
where the utmost speed, small code size, and hardware control are critical. The
macro facility speeds development and conserves maintenance time since
common sequences need only be developed once. The A51 assembler supports
symbolic access to all features of the 8051 architecture and is configurable for
the numerous 8051 derivatives.

Functional Overview

The A51 assembler translates an assembler source file into a relocatable object
module. If the DEBUG control is used, the object file contains full symbolic
information for debugging with dScope or an in-circuit emulator. In addition to
the object file, the A51 assembler generates a list file which may optionally
include symbol table and cross reference information. The A51 assembler is
fully compatible with Intel ASM-51 source modules.

Configuration

The A51 assembler supports all members of the 8051 family. The special
function register (SFR) set of the 8051 is predefined. However, the NOMOD51
control lets you override these definitions with processor-specific include files.
The A51 assembler is shipped with include files for the 8051, 8051Fx, 8051GB,
8052, 80152, 80451, 80452, 80515, 80C517, 80C515A, 80C517A, 8x552,
8xC592, 8xCL781, 8xCL410 and 80C320 microcontrollers. You can easily
create include files for other 8051 family members.

Listing File Example

The following example shows a listing file generated by the A51 assembler
during assembly. The listing file contains source code, machine code generated,
directive information, and a symbol table.

42

Chapter 4. 8051 Development Tools

A51 MACRO ASSEMBLER Test Program

DOS MACRO ASSEMBLER A51 V5. 02
OBJECT MODULE PLACED | N SAVPLE. OBJ

07/01/ 95 08:00: 00 PAGE 1

ASSEMBLER | NVOKED BY: C:\ C51\BI M\ A51. EXE SAMPLE. A51 XREF

LOC OBJ LINE SOURCE
1 S$TITLE (' Test Progran)
2 NAME SAMVPLE
3
4 EXTRN CODE (PUT_CRLF, PUTSTRING InitSerial)
5 PUBLIC TXTBIT
6
7 PROG SEGVENT CCDE
8 CONST SEGVENT CCDE
9 BITVAR SEGVENT BIT
10
11 CSEG AT 0
12
0000 020000 F 13 Reset: JMP Start
14
15 RSEG PROG
16 : * kK kK
0000 120000 F 17 Start: CALL InitSerial ;Init Serial Interface
18
19 ; This is the nain program It is an endl ess
20 ; loop which displays a text on the consol e.
0003 C200 F 21 CLR TXTBI T ; read from CODE
0005 900000 F 22 Repeat: MV DPTR, #TXT
0008 120000 F 23 CALL PUTSTRI NG
000B 120000 F 24 CALL PUT_CRLF
000E 80F5 25 SIMP Repeat
26 ;
27 RSEG CONST
0000 54455354 28 TXT: DB ' TEST PROGRAM , 00H
0004 2050524F
0008 4752414D
000C 00
29
30
31
32 RSEG BI TVAR TXTBI T=0 read from CODE
0000 33 TXTBIT: DBIT 1 TXTBI T=1 read from XDATA
34
35 END
XREF SYMBOL TABLE LI STI NG
NAME TYPE VAL UE ATTR BUTES / REFERENCES
Bl TVAR . B SEG 0001H REL=UNIT 9# 32
CONST. . . . C SEG 000DH REL=UNIT 8# 27
I NI TSERI AL . C ADDR ----- EXT 4# 17
PROG . . . C SEG 0010H REL=UNIT 7# 15
PUTSTRI NG C ADDR ----- EXT 4# 23
PUT_CRLF . C ADDR ----- EXT 4# 24
REPEAT . C ADDR 0005H R SEG-PROG 22# 25
RESET. C ADDR 0000H A 13#
SAWVPLE . N NUMB ----- 2
START. C ADDR 0000H R SEG-PROG 13 17#
TXT. . . C ADDR 0000H R SEG-CONST 22 28#
TXTBIT . B ADDR 0000H.0 R SEG-BITVAR 5 5 21 33#
REG STER BANK(S) USED: 0
ASSEMBLY COVPLETE. 0 WARNING(S), 0 ERROR(S)

The A51 assembler
produces a listing file with
page numbers as well as
the time and date of the
assembly. Remarks about
the assembler invocation
and the object file output
are displayed in this listing.

Typical programs start with
EXTERN, PUBLIC, and
SEGMENT directives.

The listing file includes a
line number for each
source line.

If a source line generates
code, the HEX values are
displayed at the beginning
of the line.

Error messages and
warning messages are
included in the listing file.
The position of each error
is clearly marked.

The XREF assembler
option produces a cross
reference list. The cross
reference report shows all
symbols and the line
numbers in which they are
used. The line number
where the symbol is
defined is marked with a
pound symbol (‘#).

The register banks used,
and the total number of
warnings and errors is
stated at the end of the
listing file.

8051/251 Evaluation Kit 43

BL51 Code Banking Linker/Locator

The BL51 code banking linker/locator combines one or more object modules
into a single executable 8051 program. The linker also resolves external and
public references, and assigns absolute addresses to relocatable programs
segments.

The BL51 code banking linker/locator processes object modules created by the
Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. The linker automatically selects the appropriate run-time
library and links only the library modules that are required.

Normally, you invoke the BL51 code banking linker/locator from the command
line specifying the names of the object modules to combine. The default
controls for the BL51 code banking linker/locator have been carefully chosen to
accommodate most applications without the need to specify additional directives.
However, it is easy for you to specify custom settings for your application.

Data Address Management

The BL51 code banking linker/locator manages the limited internal memory of
the 8051 by overlaying variables for functions that are mutually exclusive. This
greatly reduces the overall memory requirement of most 8051 applications.

The BL51 code banking linker/locator analyzes the references between functions
to carry out memory overlaying. You may use the OVERLAY directive to
manually control functions references the linker uses to determine exclusive
memory areas. The NOOVERLAY directive lets you completely disable
memory overlaying. These directives are useful when using indirectly called
functions or when disabling overlaying for debugging.

Code Banking

The BL51 code banking linker/locator supports the ability to create application
programs that are larger than 64 Kbytes. Since the 8051 does not directly
support more than 64 Kbytes of code address space, there must be external
hardware that swaps code banks. The hardware that does this must be controlled
by software running on the 8051. This process is known as bank switching.

44

Chapter 4. 8051 Development Tools

The BL51 code banking linker/locator lets you manage 1 common area and 32
banks of up to 64 Kbytes each for a total of 2 Mbytes of bank-switched 8051
program space. Software support for the external bank switching hardware
includes a short assembly file you can edit for your specific hardware platform.

The BL51 code banking linker/locator lets you specify the bank in which to
locate a particular program module. By carefully grouping functions in the
different banks, you can create very large, efficient applications.

Common Area

The common area in a bank switching program is an area of memory that can be
accessed at all times from all banks. The common area cannot be physically
swapped out or moved around. The code in the common area is either duplicated
in each bank (if the entire program area is swapped) or can be located in a
separate area or EPROM (if the common area is not swapped).

The common area contains program sections and constants which must be
available at all times. It may also contain frequently used code. By default, the
following code sections are automatically located in the common area:

m Reset and Interrupt Vectors,

a Code Constants,

m C51 Interrupt Functions,

m Bank Switch Jump Table,

= Some C51 Run-Time Library Functions.

Executing Functions in Other Banks

Code banks are selected by additional software-controlled address lines that are
simulated using 8051 port 1/O lines or a memory-mapped latch.

The BL51 code banking linker/locator generates a jump table for functions in
other code banks. When your C program calls a function located in a different
bank, it switches the bank, jumps to the desired function, restores the previous
bank (when the function completes), and returns execution to the calling routine.

The bank switching process requires approximately 50 CPU cycles and
consumes an additional 2 bytes of stack space. You can dramatically improve
system performance by grouping interdependent functions in the same bank.

8051/251 Evaluation Kit

45

Functions which are frequently invoked from multiple banks should be located in

the common area.

Listing File Example

The following example shows a map file created by the BL51 code banking

linker/locator:

BL51 BANKED LI NKER/ LOCATER V3. 52

07/01/95 08:00: 00 PAGE 1

The BL51 code banking
linker/locator produces a map

Ms- DOS BL51 BANKED LI NKER/ LOCATER V3. 52, | NVOKED BY: y ; :
C\ C51\ BI N BL51. EXE SANPLE. CBJ file vylth the time and date of
the link/locate run.
MEMORY MODEL: SMALL
The invocation line and the
I NPUT MODULES | NCLUDED: selected memory module are
SAMVPLE. OBJ (SAMPLE) listed.
C:\ C51\ LI B\ C51S. LI B (?C_STARTUP)
C:\ C51\ LI B\ C51S. LI B (PUTCHAR)
C:\ C51\ LI B\ C51S. LI B (GETCHAR)
C:\ C51\ LI B\ C51S. LI B (TOUPPER)
C:\ C51\ LI B\ C51S. LI B (_CETKEY)
LI NK MAP OF MODULE: SAMPLE (SAMPLE)
The link-map contains a table
TYPE BASE LENGTH RELOCATI ON SEGVENT NAME of the memory usage of the
''' physical 8051 memory area.
* k *k K* Kk * * DATA MEMORY * k k Kk Kk * *
REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 0001H UNI T ?DT?CGETCHAR
DATA 0009H 0001H UNI T _DATA GROUP_
000AH 0016H *xx GAP *xx
BI'T 0020H. 0 0000H. 1 UNI T ?BlI ?GETCHAR
0020H. 1 0000H. 7 *xx GAP *xx
| DATA 0021H 0001H UNI T ?STACK
* k k K* Kk * * CODE MEMORY * k k Kk Kk * *
CODE 0000H 0003H ABSOLUTE
CODE 0003H 0021H UNI T ?PR?VAI N?SAMPLE
CODE 0024H 000CH UNI T ?C_C51STARTUP
CODE 0030H 0027H UNI T ?PR?PUTCHAR? PUTCHAR
CODE 0057H 0011H UNI T ?PR?CGETCHAR? GETCHAR
CODE 0068H 0018H UNI T ?PR?_TOUPPER? TOUPPER
CODE 0080H 000AH UNI T ?PR?_CGETKEY?_CGETKEY

OVERLAY MAP OF MCDULE:

SEGVENT

+--> CALLED SEGMVENT

?C_C51STARTUP

+--> ?PR?NAI N?SAVPLE

?PR?NMAI N?SAVPLE

+--> ?PR?GETCHAR?GETCHAR
+--> ?PR?_TOUPPER?TCUPPER
+--> ?PR?PUTCHAR?PUTCHAR

?PR?CGETCHAR?GETCHAR

+--> ?PR?_GETKEY?_GETKEY
+--> ?PR?PUTCHAR?PUTCHAR

LI NK/ LOCATE RUN COVPLETE.

SAMVPLE (SAMPLE)

0009H

0 WARNI NG(S),

The overlay-map displays the
structure of the program and
the location of the bit and data
segments of each function.

0001H

0 ERRCR(S)

Error messages and warnings
are listed at the end of the
map file. These messages

46 Chapter 4. 8051 Development Tools

indicate possible problems during the link/locate run.

8051/251 Evaluation Kit 47

OC51 Banked Object File Converter

The OC51 banked object file converter creates absolute object modules for each
code bank in a banked object module. Banked object modules are created by the
BL51 code banking linker/locator when you create a bank switching application.
Symbolic debugging information is copied to the absolute object files and can be
used by dScope or an in-circuit emulator.

You may use the OC51 banked object file converter to create absolute object
modules for the command area and for each code bank in your banked object
module. You may then generate Intel HEX files for each of the absolute object
modules using the OH51 object-hex converter.

OH51 Object-Hex Converter

The OH51 object-hex converter creates Intel HEX files from absolute object
modules. Absolute object modules can be created by the BL51 code banking
linker or by the OC51 banked object file converter. Intel HEX files are ASCII
files that contain a hexadecimal representation of your application. They can be
easily loaded into a device programmer for writing EPROMS.

LIB51 Library Manager

The LIB51 library manager lets you create and maintain library files. A library
file is a formatted collection of one or more object files. Library files provide a
convenient method of combining and referencing a large number of object files.
Libraries can be effectively used by the BL51 code banking linker/locator.

The LIB51 library manager lets you create a library file, add object modules to a
library file, remove object modules from a library file, and list the contents of a
library file. The LIB51 library manager may be controlled interactively or from
the command line.

dScope-51 for Windows

dScope-51 is a source level debugger and simulator for programs created with
the Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. dScope-51 is a software-only product that lets you simulate

48 Chapter 4. 8051 Development Tools

the features of an 8051 without actually having target hardware. You may use
dScope-51 to test and debug your embedded application before actual 8051
hardware is ready. dScope-51 simulates a wide variety of 8051 peripherals
including the internal serial port, external 1/O, and timers.

NOTE

dScope-51 and dScope-251 are essentially the same product. The only
differences are the support for either 8051 or 251 development tools. dScope is
used throughout this book to refer to either debugger.

prpushl il gy S ' g i

show how to use dScope-51.

uVision/51 for Windows

pVision/51 is an integrated software development platform that includes a
full-function editor, project manager, make facility, and environment control for
the Keil 8051 tools. When you use pVision/51, you no longer have to learn the
command-line syntax of any of the tools. pVision/51 speeds your embedded
application development by providing the following:

m Standard Windows user interface,

m Dialog boxes for all environment and development tool settings,

= Multiple file editing capability,

= Full-function editor with user-definable key sequences,

m Application manager for adding external programs into the pull-down menu,
m Project manager for creating and maintaining projects,

m Integrated make facility for building target programs from your projects,

= On-line help system.

NOTE

MVision/51 and pVision/251 are essentially the same product. The only
differences are the support for either 8051 or 251 development tools. pVision is
used throughout this book to refer to either IDE.

MVision/51.

8051/251 Evaluation Kit 49

50 Chapter 4. 8051 Development Tools

8051/251 Evaluation Kit 51

Chapter 5. 251 Development Tools

This chapter discusses the features and advantages of the 8051 and MCS® 251
microprocessor family and the development tools available from Keil Software.
We have designed our development tools to help you quickly and successfully
complete your job. For this reason, our tools are easy to use and are guaranteed
to help you achieve your design goals.

MCS® 251 Microcontroller Family

In response to demands for more power and capability, Intel has developed the
new MCS® 251 microcontroller family. The 251 is completely backwards
compatible with the 8051. All of your existing 8051 software can run on the
new 251 CPU. Intel’s first derivative, the 80C251SB, is a direct pin-for-pin
replacement for the 80C51FX.

By design, the 251 is a powerful 8-bit/16-bit CPU. At an equivalent clock speed,
existing 8051 code executes up to 5 times faster on the 251. C applications that
are recompiled with Keil C251 can execute up to 15 times faster. Your existing
8051 software can achieve dramatic performance increases by using the features
found in the 251 instruction set. The following are a few highlights of the 251.:

m 8-bit, 16-bit, and 32-bit instructions,

m 8-bit, 16-bit, and 32-bit registers,

m 16 Mbyte linear address space,

m Direct support for 16-bit and 32-bit pointers,
m 16-bit stack & stack addressing,

m Direct addressing mode for 64KB.

In addition to these features, the 251 offers configuration options for binary
mode (8051 compatible instruction set) or source mode (251 instruction set),
page or non-page mode, and wait state generation.

52 Chapter 5. 251 Development Tools

251 Development Tools

Keil Software provides the following development tools for the 251.:

m C251 Optimizing C Compiler (see below),

= A251 Macro Assembler (see page 55},

= L251 Linker/Locator (see page 59},

= OH251 Object HEX Converter (see page 50},
= LIB251 Library Manager (see page 60).

= dScope-251 for Windows (see page B0},

= pVision/251 for Windows (see page 61).

NOTE

All of our 251 tools utilize the Intel OMF251 object module format.
Additionally, the L251 linker/locator can combine OMF251 and OMF51 object
modules.

C251 Optimizing C Cross Compiler

The Keil C251 Compiler is a dedicated ANSI C compiler designed explicitly for
the MCS® 251 microcontroller family. The C251 compiler is an extended ANSI
C compiler which allows full access to all resources in a 251 microcontroller
system. You may re-compile your existing C51 code with the C251 compiler.

8051/251 Evaluation Kit 53

Data Types
The C251 compiler supports the following data types.
Data Type Bits Bytes Value Range ‘
bit 1 Oorl
signed char 8 1 -128 to +127
unsigned char 8 1 0 to 255
signed int 16 2 -32768 to +32767
unsigned int 16 2 0 to 65535
signed long 32 4 -2147483648 to +2147483647
unsigned long 32 4 0 to 4294967295
float 32 4 +1.175494E-38 to +3.402823E+38
double 64 8 +1.7E-308 to +1.7E+308
pointer 1,2,3,0r4 Object address
shit 1 Oorl
sfr 8 1 0 to 255
sfrl6 16 2 0 to 65535

Memory Selector

The C251 compiler provides full support for the 251 architecture and can access
all system components. Each variable can be explicitly located anywhere in the
251 address space. The linear 16 Mbyte address space can be accessed with
many addressing modes. In addition, all addressing modes of the 8051 are fully
supported by the 251.

Selector 251 Address Space ‘
near 64 Kbyte direct and indirect memory addressing.
far 16 Mbyte indirect memory addressing; object size < 64 Kbytes.
huge 16 Mbyte indirect memory addressing; any object size.
data Direct memory addressing for on-chip RAM (128 bytes); fast 8-bit accesses.
bdata Bit-addressable RAM; mixed bit and byte accesses (16 bytes).
ebdata, ebit Extended bit-addressable RAM; mixed bit and byte accesses.
idata Indirect memory addressing for on-chip RAM (256 bytes); access with
MOV @Ri.
pdata Paged XDATA memory (256 bytes); access with MOVX @Ri.
xdata XDATA memory (64 Kbytes); access with MOVX @DPTR.
code CODE memory (64 Kbytes); access with MOVC.

54 Chapter 5. 251 Development Tools

Memory Models

The memory model determines the default memory selector used for automatic
variables and parameter passing areas. With the HOLD directive you can
specify additional memory selectors for small objects, for example, the following
command line:

C251 PROG C HOLD (2, 4, 8)

directs the C251 compiler to locate global variables 2 bytes in size or smaller in
data memory; variables 3 or 4 bytes in size in near memory; and variables 5 to 8
bytes in size in xdata memory.

The following table lists the memory areas used for each memory model.

Parameters &

Memory Automatic Global Constant Pointer Pointer
Model Variables Variables Variables Definition Size
TINY data data near near * 2 bytes
SMALL data data near far * 3/ 4 bytes
COMPACT pdata pdata near far * 3/ 4bytes
MEDIUM near near far far * 3/ 4 bytes
LARGE xdata xdata near far * 3/ 4 bytes

Program Size

The MCS® 251 microcontroller family allows program sizes up to 16 Mbytes.
The generated 251 code can be optimized by using specific JMP and CALL
instructions. The ROM directive lets you choose the combination of JMP and
CALL instructions that is used.

ROM Directive JMP Instruction CALL Instruction
SMALL AJMP ACALL
COMPACT AJMP LCALL
LARGE LIMP LCALL

HUGE LIMP ECALL

8051/251 Evaluation Kit 55

Register Optimization

Depending on the program context, the C251 compiler allocates up to 24 CPU
registers for register variables. Any registers modified during function execution
are noted within each module. The linker/locator generates a global,
project-wide register file which contains information about the registers altered
by external functions. Consequently, the C251 compiler knows the registers
used by each function in an application. With this information, the C251
compiler can optimize the overall CPU register allocation of those functions.

Registers RO-R7 are used for parameter passing. This technique yields very
efficient code that compares favorably to assembly programming. Additional
parameters are passed via fixed memory locations or the 251’s hardware stack.

Reentrant Code

The 251 supports stack-based variable addressing. This permits the C251
compiler to support fast reentrant functions. The #pragma reentrant and
#pragma noreentrant preprocessor directives control code generation.
Non-reentrant code stores variables in directly addressable memory locations
and yields the fastest program execution. Data overlaying considerably reduces
the memory requirements in C applications of this type.

C Run-Time Library
The run-time libraries provided with the C251 compiler contain over 100

routines, all of which are reentrant. Source code for I/O and memory allocation
functions is also included.

Listing File Example

The C251 compiler produces a listing file that contains source code, directive
information, an assembly listing, and a symbol table.

56

Chapter 5. 251 Development Tools

C251 COWPI LER V1.00, SAWPLE 07/01/95 08:00: 00 PAGE 1
DOS C251 COWPI LER V1.00, COWPI LATI ON OF MODULE SAMPLE

OBJECT MODULE PLACED | N SAVPLE. OBJ

COWPI LER | NVOKED BY: C:\ C251\ BI N\ C251. EXE SAMPLE. C CODE

I evel

stnt source

#i ncl ude <reg251sb.h> /* SFRs for the 251SB CPU */

unsi gned | ong outsqr (
unsi gned | ong num
unsi gned power) {

unsigned |long result;
for (result = 1; power
result *= num

}

return (result);

}

= 0; power--) {

el e
NBRWNROO©ONOUAWN R
PRRNONRP R R

ASSEMBLY LI STI NG OF GENERATED OBJECT CODE

: FUNCTI ON QUTSQR (BEG N)

0000 A57A1D00 R MoV num DR4
; SOURCE LINE # 3
; SOURCE LINE # 5
; SOURCE LINE # 9
0004 A56D55 XRL WR10, WR10
0007 A57A5500 R MoV resul t, WR10
000B A57E540001 MoV WR10, #01H
0010 A57A5500 R MoV resul t +02H, WR10
0014 ?C0001:
0014 E500 R MoV A power +01H
0016 4500 R ORL A, power
0018 6019 Jz ?C0002
SCOURCE LI NE # 10
001A A57E1D0OO R MoV DR4, resul t
001E A57E0DOO R MoV DRO, num
0022 120000 E LCALL ?C?LMUL
0025 A57A1D00 R MoV resul t, DR4
; SOURCE LINE # 11
0029 E500 R MoV A, power +01H
002B 1500 R DEC power +01H
002D 7002 INZ ?C0005
002F 1500 R DEC power
0031 ?C0005:
0031 80E1l SIMP ?C0001
0033 ?C0002:
SOURCE LI NE # 13
0033 A57E1D0O0 R MoV DR4, resul t
; SOURCE LINE # 14
0037 ?C0004:
0037 22 RET

: FUNCTI ON QUTSQR (END)

MODULE | NFORMATI ON:
CCDE S| ZE
CONSTANT S| ZE
XDATA S| ZE
PDATA SI ZE
DATA S| ZE
| DATA S| ZE
BIT SIZE
EDATA SI ZE
FDATA SI ZE

END OF MODULE | NFORVATI ON.

STATI C OVERLAYABLE
56 ----

10

C251 COVPILATI ON COMPLETE. 0 WARNING(S), 0 ERROR(S)

The C251 compiler produces a
listing file with page numbers
as well as time and date of
the compilation. Remarks
about the compiler invocation
and object file output are
displayed in this listing.

The listing includes a line
number for each statement
and a nesting level for each
block enclosed within curly
braces (‘{* and }).

Error messages and
warning messages are
included in the listing file.

The CODE compiler option
includes an assembly code
listing in the listing file.
Source line numbers are
embedded within the
generated code.

A memory overview provides
information about the 251
memory areas that are used.

The total number of errors

8051/251 Evaluation Kit 57

and warnings is stated at the end of the listing file.

58 Chapter 5. 251 Development Tools

A251 Macro Assembler

The A251 assembler is a macro assembler for the 251 family which supports
both the Intel Macro Programming Language (MPL) and Microsoft style macros.
The A251 assembler translates symbolic assembly mnemonics into executable
machine code. With the A251 assembler, you can easily re-assemble source
code written for the Keil A51 assembler or the Intel ASM-51 assembler.

Functional Overview

The A251 assembler translates 251 assembly source file into relocatable object
modules. If the DEBUG control is used, object files contain full symbolic
information for debugging with dScope or an in-circuit emulator. The A251
assembler also generates a list file which may include symbol table and cross
reference listings.

Listing File Example

The following example shows a listing file generated by the A251 assembler
during assembly. The listing file contains source code, machine code generated,
directive information, and a symbol table.

A251 MACRO ASSEMBLER Test Program 07/ 01/ 95 08: 00: 00 PAGE 1 The A251 assembler
produces a listing file with
page numbers as well as
the time and date of the
assembly. Remarks about

DOS MACRO ASSEMBLER A251 V1. 00
OBJECT MODULE PLACED | N SAVPLE. OBJ
ASSEMBLER | NVOKED BY: C:\ C251BI N\ A251. EXE SAVPLE. A51

LoC OBJ LINE SOURCE the assembler invocation
and the object file output
1 S$TITLE (' Test Program) are displayed in this listing.
2 $MODSRC
3 NAME SAMPLE
4
5 EXTRN CODE (PUT_CRLF, PUTSTRING InitSerial) Tvpical cart with
6 PUBLIC TXTBIT ypical programs start wi
7 EXTERN, PUBLIC, and
______ 8 PROG SEGVENT CODE SEGMENT directives.
—————— 9 STRINGS SEGVENT CODE
—————— 10 BITVAR SEGVENT BIT
11
000000 ig CSEG AT 0 The listing file includes a
000000 020000 F 14 Reset: JMWP Start line number for each
15 source line.
------ 16 RSEG PROG
17 wwRek

000000 120000 E 18 Start: CALL InitSerial ;Init Serial Interface
19

8051/251 Evaluation Kit

59

20 ; This is the main program It is an endl ess
21 ; loop which displays a text on the consol e.
000003 C200 F 22 CLR TXTBI T ; read from CODE i
000005 900000 F 23 Repeat: MV DPTR #TXT 'Cfoé:jzot‘ggedgz 32&352?2
000008 120000 E 24 CALL PUTSTRI NG o > <
00000B 120000 E 25 CALL PUT_CRLF displayed at the beginning
00000E 8000 F 26 SIMP Repeat of the line.
27
—————— 28 RSEG STRI NGS
000000 54455354 29 TXT: DB ' TEST PROGRAM , 00H
000004 2050524F
gggggg 3852414'3 Error messages and
30 warning messages are
31 included in the listing file.
32 The position of each error
—————— 33 RSEG BITVAR ; TXTBIT=0 read from CODE is clearly marked.
0000. 0 34 TXTBIT: DBIT 1 ; TXTBI T=1 read from XDATA
35
36 END
SYMBOL TABLE LI STI NG
NAME TYPE VALUE ATTRI BUTES
The symbol table listing
:3|N|T¥22Rl AL S g SEG ~ 000001H g#:LNI T. ALN=BIT includes names of data
PROG C SEG 000010H REL=UNI T, ALNEBYTE objects, the object type,
PUTSTRI NG C ADDR ----v-- EXT address, and other
PUT_ CRLF C ADDR ------- EXT attributes.
REPEAT C ADDR 0005H R SEG=PROG
RESET. C ADDR 0000H R SEG=?CO?SAMVPLE?4
SAMPLE -- ---- ------
START. C ADDR 0000H R SEG=PROG
STRINGS. C SEG 00000DH REL=UNI T, ALN=BYTE
TXT. L. C ADDR 0000H R SEG=STRI NGS
™>mBIT. B ADDR 0000H. 0 R SEG=BI TVAR
REG STER BANK(S) USED: 0O The register banks used,
and the total number of
ASSEMBLY COVPLETE. 0 WARNING(S), 0 ERROR(S) Warnings and errors is

stated at the end of the
listing file.

L251 Code Banking Linker/Locator

The L251 linker/locator is a code banking linker for our 251-based tools. The
L251 linker lets you combine object modules created by our 251 tools with
object modules created with our 8051 tools. The L251 linker/locator combines
one or more object modules into a single executable 251 program. The linker
also resolves external and public references, and assigns absolute addresses to
relocatable programs segments.

The L251 linker/locator processes object modules created by the Keil C51
compiler, C251 compiler, A51 assembler, and A251 assembler and also
processes object modules created by the Intel PL/M-51 compiler and ASM-51
assembler. The linker automatically selects the appropriate run-time library and
links only the library modules that are required.

60 Chapter 5. 251 Development Tools

Normally, you invoke the linker from the command line specifying the names of
the object modules to combine. The default command-line directives for the
linker have been chosen to accommodate most applications without the need to
specify additional directives. However, it is easy for you to specify custom
settings for your application.

OH251 Object-Hex Converter

The OH251 object-hex converter creates Intel HEX files from OMF251 absolute
object modules. Absolute object modules are typically created by the L251
linker/locator. Intel HEX files are ASCII files that contain a hexadecimal
representation of your application. They can be easily loaded into a device
programmer for writing EPROMS.

LIB251 Library Manager

The LIB251 library manager lets you create and maintain library files. A library
file is a formatted collection of one or more object files. Library files provide a
convenient method of combining and referencing a large number of object files.
Libraries can be effectively used by the L251 linker/locator.

The LIB251 library manager lets you create a library file, add object modules to
a library file, remove object modules from a library file, and list the contents of a
library file. The LIB251 library manager may be controlled interactively or from
the command line.

dScope-251 for Windows

dScope-251 is a source level debugger and simulator for programs created with
the Keil C251 compiler and A251 assembler. dScope-251 is a software-only
product that lets you simulate the features of the 251 without actually having
target hardware. You may use dScope-251 to test and debug your embedded
application before actual 251 hardware is ready. dScope-251 simulates all
peripherals of the 251 including the 16 Mbyte address space.

8051/251 Evaluation Kit 61

NOTE

dScope-51 and dScope-251 are essentially the same product. The only
differences are the support for either 8051 or 251 development tools. dScope is
used throughout this book to refer to either debugger.

show how to use dScope-251.

uVision/251 for Windows

MVision/251 is an integrated software development platform that includes a
full-function editor, project manager, make facility, and environment control for
the Keil 251 tools. uVision/251 speeds your embedded application development
by providing the following:

m Standard Windows user interface,

m Dialog boxes for all environment and development tool settings,

= Multiple file editing capability,

m Full-function editor with user-definable key sequences,

m Application manager for adding external programs into the pull-down menu,
m Project manager for creating and maintaining projects,
m Integrated make facility for building target programs from your projects,

= On-line help system.

NOTE

pVision/51 and pVision/251 are essentially the same product. The only
differences are the support for either 8051 or 251 development tools. pVision is
used throughout this book to refer to either IDE.

pVision/251.

8051/251 Evaluation Kit 63

Chapter 6. Using the 8051/251 tools

To make it easy for you to evaluate and become familiar with our 8051 and 251
product line, we provide an evaluation diskette with sample programs and
limited versions of our tools. The sample programs are also included with our
standard product Kits.

This chapter introduces the primary user-interface products, pVision and
dScope, and shows you how to use them to compile, link, and run the provided
sample programs. The following sections are included in this chapter:

m Starting pVision and dScope,

= pVision integrated development environment overview,

m dScope simulator/debugger overview,

= Sample programs,

m Building and running the HELLO sample program,

= Building and running the MEASURE sample program,

= Building the BADCODE sample program.

The examples and descriptions in this chapter are illustrated using our
Windows-based tools. These are the same tools distributed with our 8051/251
Evaluation Kit. Contact sales/support if you would like a copy of our
DOS-based evaluation Kit.

NOTE

The 8051/251 Evaluation Kit includes evaluation versions of our 8051/251 tools.
The evaluation tools are limited in functionality and the code size of the
application you can create. Refer to the “Eval Kit Notes™ for more information
on the limitations of the evaluation tools. For larger applications, you need to

purchase one of our development kits. Refer to ““Chapter 3. 8051/251 Product

Line! on page f3ifor a description of the kits that are available.

64 Chapter 6. Using the 8051/251 tools

Starting pVision and dScope

Both pVision for Windows and dScope for Windows are standard Windows
applications. You launch them by double-clicking on the appropriate icon in the
program group created by the installation program.

Frogram Manager

Hile Dpfions ‘#indow Help

|

|

=1 [+

uVision IDE Overview

pVision is an integrated software development platform that combines a robust
editor, project manager, and make facility. pVision supports all of the Keil tools
for the 8051, 251, and 166. pVision helps expedite the development process of
your embedded applications by providing the following:

= Full-function editor with user-definable key sequences,

= Application manager for linking external program files into the pull-down
menu,

m Project manager for creating and maintaining your projects,

m Integrated make facility for assembling, compiling, and linking your
embedded applications,

m Dialog boxes for all environment and development tool settings.

8051/251 Evaluation Kit 65

About the Environment

In yVision, you may use the keyboard or the mouse to select menu commands,
settings, and options for the development tools. You may also use the keyboard
to enter program text.

The pVision screen provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and one or more windows for
source files, dialog boxes, and information displays.

-|®
= iGNl Prapes] Hon Qplond o Wieodos' Help _i
] (s (oalm] EEL) () () e Menu bar
*
ptatdc mdets onalgreed <tac T_dn = 0@ u
mhatic mdets mmadlgmd char ek = 00
—(— Tool bar
imtacrapt 4 wring 2|
Source Window —peeeemmee T
dpcaived date ifmtecTopt
Lf (ET Im E5
I
EL = Br
if ({w_in + L} W= y_swi) i
cheaf z_inis] = SBF: Vertical
1 (" scroll bar
D LT —
franamifted date rtszropt.
.
Lf 7T im Ei
I
L = fr
if (bl Be b outh
FSF = thaf [t_aotéd]
slow
Status bar — sl Horizontal
& scroll bar
=1 1=
| 47

66 Chapter 6. Using the 8051/251 tools

You can quickly access many of the features of pVision using the buttons on the
tool bar.

Print Tile horizontally

Save Tile vertically

Open Color syntax highlighting

New file Show occurrences

W] D Al

Find Help
Repeat find Paste text
Compile Copy selected text
Update Cut selected text
Build all

pVision lets you simultaneously open and view multiple source files. While
writing part of your C program in one window, you can refer to header file
information in another window. You can move and resize source windows using
the mouse or keyboard.

-
5
e B8R [Sojeld Hon Upleis ook Melrs Hap
--.I TEFH I -I.
BIREN.C El
mtatic xdats unmignad char ©_in = 0O-
miakic wdake wrmigned chap c_owl = 35 fradd main |veddl |
L —— [} B o o — - —
| EREAL .
s tabie wadd e L5y (eeldl Enberrepl 4 using 9 e e e e e e e e e
< pradd com Lrdtislice {watd) -
i
PFecudived daka intereupk Pradd com bBasdzaks |
- N
52 [RE b= O]
I char cam_potchar
Bl m O e igreed char e
LE {ixr_dn + 1) Is x_cut} (char cam pots
rnf [r_indd| = SEAW char ®*xi »
I
line com getohar (wedd):
T
[Trargmitied daka inkwrcugf pmaigrred char cem_cbuaflan Ivaid -
f [FE F= O] s igresd crar com thuflan jvadd) :
I -
=0 Fu L
TIHEE .C
iff §&_&n 1= &_suati e e e e e e e e e
SHIE = kbl [gpobdd] - dnfins TOEERG TTCRS PFEFR_SEC 1549
@l
i dissklsed = i Efllradd tisserd initdsidies {eadd): &
O [« =1 CH
o | 47

8051/251 Evaluation Kit

67

Editor

MVision’s built-in editor can be customized to emulate many popular text
editors. You can change key assignments for almost all editor functions. The
following table lists a few of the editor functions that are available:

Beginning of File
Beginning of Line
Beginning of Page
Cascade Windows
Close File

Copy to Clipboard
Cursor Down
Cursor Left
Cursor Right
Cursor Up

Cut to Clipboard
Delete

Delete Line

Delete to End of Line

Destructive Backspace
End of File

End of Line

End of Page
Exclusive Mark
Forward Quick Search
Forward Replace

Full Search

Insert Template

Mark Block

Mark Columns

Mark Lines
Move/Resize Window
New File

Menu Commands

Through pull-down menus on the menu bar and editor commands, you control
the pVision operations. You may use either the mouse or the keyboard to access

commands from the menu bar.

[[

OEE & BE

Fraj=cl [Bun

==l cptra for e D81 Compilss

[EOEEILM [r=in idess |ielp
B AR e el I

Edhar Calogs

ProEi0iE FPRDE Frraisfior

PrLIES T Cimrguikss
HLS] el Easbing Lnkar...
ST S Delugrsre

S gl

Ieyircrmmenl Fathapacs
ey S igTueniy,

Hakn .

Next Error

Open File

Page Down

Page Up

Paste from Clipboard
Previous Error
Previous Window
Print File

Repeat Last Search
Reverse Quick Search
Undo

Word Left

Word Right

68 Chapter 6. Using the 8051/251 tools

The menu bar provides you with access to menus for file operations, editor
operations, project maintenance, external program execution (such as running
the dScope debugger/simulator or another program), development tool option
settings, window selection and manipulation, and on-line help.

Development Tool Options

MVision lets you set options for software development tools such as the C51
compiler and A51 assembler. Simply select the appropriate item from the
Options menu and use the mouse or the keyboard to change the options.

Ch1 Compller Options [HELLOUPRL)

Listing| [Object | aptimization | Memory Model | sisc |

i)

™ Inchade gymbiods

— Prge Langn €9 _Coscsl |
Inclidr AnsEmibdy codn =

E Inchide congdionnl cadn L]

I it fnclede files Elnisuk |

Wi |l. weu | & il

G Line Diptinn e Siring
|¢_1: 8 DE PL{ES P81 3 0 [Largu] Seoll B0 S peed) R

Project Manager

Most embedded programs are composed of several source files. This means that
a project includes a large collection of individual files. Some files may require
compilation with the C51 compiler, some files may require assembly, and some
files may require custom translation in order to create a target program.

To accommodate the intricacies of project maintenance, pVision includes a
project manager facility. The project manager gives you a method of creating
and maintaining a project so that the target program is always up-to-date. The
project manager can easily handle file-to-file dependencies, including file
nesting, as well as the exact sequence of operations required to build the target.

Use the project manager dialog box to define the source files that make up the
project; use the make commands from the Project menu to compile source files

8051/251 Evaluation Kit 69

and to generate the target; then, use the simulator and emulator commands from
the Run menu to execute, test, and debug your application.

Froject Mansger | TOF.FH.)

S AR PLE S TO P TOE PRL
HBowroe Files
[temes | [S]
I s | | Hilp |
Nnahikes Click in Opea File
Lrarslain: ||:-5| Comypelin ﬂ ﬂ,l:.p:tl [whirg |
™ bawye Duidd e i Lin kL

All aspects of a project are saved in a project file. The project file includes: the
source files that make up the target program; the compiler, assembler, and linker

command line options; the debugger and simulator options; and the make facility
options.

70 Chapter 6. Using the 8051/251 tools

dScope Simulator/Debugger Overview

dScope is a source level debugger/simulator for the entire Keil Software product
line. You can use dScope to debug the applications you develop using the C51
and C251 compilers and A51 and A251 assemblers. In addition, dScope lets you
debug application written using the Intel PL/M-51 compiler and the ASM-51
assembler.

dScope is a software-only product that simulates most of the features of 8051
and 251 microcontrollers without actually having target hardware. You can use
dScope to test and debug your embedded application before the hardware is
ready. dScope simulates a wide variety of 8051 and 251 peripherals including
the serial port, external I/O, and timers. Support for the various microcontroller
derivatives is provided through the use of dynamic link libraries (DLLsS).

In addition to simulating the CPU, dScope interfaces directly to the 8051 and
251 monitor programs and to several popular emulators.

e M Salup Peripheraks Hdp
| IO | M e Bk Menu bar
Bageiuks: MEASLURE Faifs =
Commards Ood GoldQursd Seepiat] Slephnied Sapieen Sap 3 Tool bar
ZIE: THOD & TEODO | PeAE: su gelecl made I i o
T TRl = i; A sbwrt bimer B Fl=03 EJ-0d
1 -] £Td » 1 i= srables Tieer S T uiCars Azl EG 0
Z21: EAL = 1; #= glohal anksrry RBE=0) ET-[0
53 Bl =
P2¥: elesr_resords i F= il biabize o el | e —
I EIR Erindf | menu | A= display commel _ Ewpiei | [PP —
E2%: while i[1§ [fu Loop forewer ||SESSSSmmmmm— 1: £ KIED
b4 printf [“unCemssnd: "] —p | g £
2T getline | Ecmobes? 8], aizesd [cmdbead)), A= lnpak Cyz: STE
ﬁ:ﬂ ¥ L E mibuFL] 1] EL 2— o = RegiSter
' o 1 & B; ¢ jL] F& & 3+ [AR CErRIET = upf — .
00 ot [§] = Couppariasdnuf[i]): — window
e A [LIEET
=1 Debug
=] Conand T af window
— = -
]
) Command
5 window
H
] .
» Serial
£ window
T ASH ASTIGH Tresk Teeabls TR THS -
= | ;

8051/251 Evaluation Kit 71

About the Debugger

In dScope, you may use the keyboard or the mouse to select menu commands,
step through your application, and select debugging options. The dScope screen,
pictured above, provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and several windows for
displaying registers, memory contents, serial I/O, and commands. You can
quickly display and hide the windows shown above with the buttons on the tool

bar.
Call stack window
Code coverage
window
CPU driver Toolbox window
Open object file Reset
K Help
R R EEE R REEEFENEEE
Symbol browser
Command window window
Debug window Memory window
Register window Performance
Serial window analyzer window

Watch window

CPU Simulation

dScope simulates virtually every derivative of the 8051 and 251
microcontrollers. Support for each CPU is provided through the use of DLLs.
Before you load your target application, you must select the appropriate CPU
driver from the CPU driver drop-down box on the tool bar. You may also select
the Load CPU driver command from the File menu. The following CPU drivers
are included with dScope.

CPU Driver DLLs Supported Derivatives ‘
80251S.DLL Intel 80C251SA, 80C251SB, 80C251SQ, and 80C251SP

82930.DLL Intel 82930 USB

MONS51.DLL Keil Software 8051 Target Monitor

MON251.DLL Keil Software 251 Target Monitor

RISM251.DLL Intel Reduced Instruction Set Monitor (RISM) for the 251

80320.DLL Dallas Semiconductor 80C320, 80C520, and 80C530

8051.DLL 8031, 8051, 80C31,and 80C51

72 Chapter 6. Using the 8051/251 tools

CPU Driver DLLs Supported Derivatives ‘
80515.DLL 80C515 and 80C535
80515A.DLL 80C515A and 80C535A
80517.DLL 80C517 and 80C537
80517A.DLL 80C517A and 80C537A
8051FX.DLL 8051FA, 8051FB, and 8051FC
8052.DLL 8032, 8052, 80C32, and 80C52
80552.DLL 8xCh52

80751.DLL 8xC750, 8xC751, and 8xC752
80410.DLL 8xCL410

80781.DLL 8xCL781

dScope simulates up to 16 Mbytes of memory from which areas can be mapped
for read, write, or code execution access. dScope traps and reports illegal
Memory accesses.

In addition to memory mapping, dScope also =

provides support for the integrated peripherals of e

the various 8051 and 251 derivatives. The CPU’s [¢ & B mune-rminma 0|
on'-chip peripherals are supported by the CPU [Fimer 1
driver in the DLL. m oot
You can select and display the on-chip peripheral - W =
components using the Peripherals menu. Youcan = cossmi LI
also change the aspects of each peripheral using sates: [Fun

the controls in the dialog boxes. Eunn T GATE [INTH

8051/251 Evaluation Kit 73

The Debug Window

After you have loaded the appropriate CPU driver, you are ready to load your
target program. You can use the button on the tool bar to open your object file,
or you can use the Load object file command from the File menu.

Once your application is loaded, the dScope debug window displays your C,
assembly, or PL/M-51 source text.

Commards Gol GoTlCursl Sbepful! Stepindod SlegCverl Stopl

#18: woid wadn (woid) | = guecution starts here afte | G |*
+28: SCON : BuSH; S SCOM; mede §, 8-Bit LGAT
= 000N W19 o SCOR[Ox2E) HO=S0
21 THOD 1= Bx28; #u THOD: timer 1, mode 2, 8Bl Eupkie
=L | BODEH LFE ORL THOD D=3 , W=kl
22 TH1 = B8P3, = THI: reload value for 2490
eC . QOOOH H2ZZ: WO TH1{ BxED) HBXF S
23: TE1 11 F= TRU: timer 1 rum
#C.BE0CH H23: EETE TR1{EwER.E)
24 Tl i1 A= Tl w2k TI %o send First
C;BOEH HI%; SETE TIQ BB, 1)
DE: printt [“Hells Morldyn™): J= the ‘printf- furction call |_Assombie._|
3T -

miad [l *
* | [+

Three display formats are available from the Command menu in the debug
window. They are:

s View High Level. This display format shows your original source text
exactly as it appears in your source files.

s View Mixed. This display format shows your original source text mixed
with the assembly code generated by the compiler or assembler.

m View Assembly. This display format shows only the assembly code
generated for your source.

In addition to target program, the debug window can display a trace history of up
to 512 previously executed instructions. To enable the trace history, select the
Record Trace command from the Command menu in the debug window.

74

Chapter 6. Using the 8051/251 tools

Command Window

You interact with dScope by entering commands from the keyboard and
selecting options with the mouse. You can enter nearly all dScope commands in
the command window. dScope responds to the commands you enter at the
command prompt (“>).

OO N

>
rreset
Ul maln
g, main

1
i)
[Tides EEM ZEEIEH Ereakbizabla T=E NS +
Tl B

You can interactively display and change variables, registers, and memory
locations from the command window. You can also enter assembly code to
patch or test parts of your program.

For example, you can type the following text commands at the command prompt:

DPTR Display the DPTR register.

R7 =12 Assign the value 12 to register R7.

time.hour Displays the hour member of the time structure.
time.hour++ Increments the hour member of the time structure.
index =0 Assigns the value 0 to index.

You are not limited to using the command window to control dScope. You can
also use the mouse to select pull-down menus from the menu bar and invoke
commands from the tool bar.

8051/251 Evaluation Kit

75

Serial Window

dScope provides a serial window for serial input and output. Serial data output
from the simulated CPU is displayed in this window. Characters you type in this

window are input to the simulated CPU.

ommand

|

|

I

b commard
| Pwad

| Display
| Time

| EnEmrwal
| Claar

| Buit

| Start

"

cEmand

oynbay =====&

R [n]
]

T ki am: &6
1 sm:pe. bkl
C

a
5

- il i) AEMOTE HEASURBEHENT RECORDER: o e o o e o] o
This program is & simple Mesturement Recorder. It is based
of the BOS1S CPU ared records Ehe state of Port 4 ard Pork S
and the veltage on the four analog inputes AND throwgh RNE.

funckion ==sssssssssssssassmmansmm s
raad (nr Fecorded aeaauresEn s
display current measurenant values
gl Eims

set interuval Eims

clear Bebsursment records

quit seasurement recerding

ptart measursment recording

B S e e e = e = e ===

| ==
+

This lets you simulate the CPU’s UART without the need for external hardware.

Watch Window

You can use the watch window to interactively display variables and complex
structures. This is useful when you want to see the effects or your program on a

buffer or data structure.

(01) idx;
(82} P1:
(B3] P3.3

BaFF

(@8] emdbuP: EN,BYEEYEEY B SN BN E BN BN BN BB

« |

Not only can you watch the variables in your program, you can also change them
using standard C expressions you enter at the command prompt in the command

window.

76 Chapter 6. Using the 8051/251 tools

Performance Analyzer Window

dScope has a built-in performance analyzer that lets you record timing statistics
for functions and program blocks. Performance analysis results are displayed in
the performance analyzer window.

m

‘Commenanids

O% 18 20 30 4B 56 6O TH 89 MIe9T —
Y Y Y Y) I | (|

cunspecifiedy
sair : I
timers : NN
olear _records: |
measure_displey I
save_current_sessurements
read_index

man bma miee bme aeg e leinl hne kY counk
CCTEETEN CTTESTE CERFETE CETTET EET N E

The performance analyzer window shows the name of each function or memory
range of each block along with a bar graph showing the percentage of time spent
in that function or block. You may select a function to view statistics in the
bottom portion of the performance analyzer window. The following statistics are
maintained for each function or program block:

= mintime Minimum time spent in the function or block,

= maxtime Maximum time spent in the function or block,

= avgtime Average amount time spent in the function or block,
= total time Total time spent in the function or block,

= count Number of times the function or block was entered.

8051/251 Evaluation Kit 77

Other Features

In addition to the features described above, dScope offers numerous other
functions that provide a robust debugging environment.

Functions

A powerful feature of dScope is its ability to let you define and use C-like
functions for a wide variety of applications. For example, you can create dScope
functions to manipulate the on-chip peripherals, extend the command set of
dScope, and generate digital and analog input to hardware ports. There are three
types of functions available to dScope:

m User Functions extend the command scope of the debugger,

= Signal Functions generate input to the 8051 peripherals,

m Built-in Functions provide convenient utility routines (like printf and
memset) that you can use in user or signal functions.

in dScope.

Breakpoints

It is easy to set breakpoints on high-level statements, assembler instructions, and
conditional expressions. Simply move the mouse pointer to the line or
instruction and double-click. You can even set a breakpoint based on the type of
memory access type or repetition factor. When dScope reaches a breakpoint, it
can perform a wide range of operations—from simple probing to running macro
functions.

78 Chapter 6. Using the 8051/251 tools

Code Coverage

dScope provides a code coverage function which marks the lines of code that
have been executed. In the debug window, lines of code which have been
executed are market with a plus sign (‘+”) in the left column.

Commardgds Gol GoTlCursl Stepdull Siepinted SlepOwverl Siopl
LT unsigraed ink idx; /= index tor cirf e |
289
210 Ju initialize the serial interface =/
=211 SO0H = Bx%A; J= intbilalize A
ik BD s 1 Su internal Bawd
#213 FCOH 1= BxEQ; = oet to SERE B IE
8
21% /= setup the timer @ interrupt =/
“216 THE = FERIOO; o el Blmer per
218 THOD = THOD | BwBZ: /= oelect mode 2
219 ™8 = 1; A atart Limer 9 —
228: ETE = 1: /= gnable timer |_assambie..._|
| 221 Feg = 1. i]

N
Sl [+

You can use this feature when you test your embedded application to determine
the sections of code that have not yet been exercised. The Code Coverage dialog
box also provides useful information and code coverage statistics.

8051/251 Evaluation Kit 79

Sample Programs

This section describes the sample programs that are included in our evaluation
kits and product kits. The sample programs are ready for you to run. You can
use the sample programs to learn how to use our tools. Additionally, you can
copy the code from our samples for your own use.

The sample programs are found in the \cs1\exampLES\ directory. Each sample
program is stored in a separate subdirectory along with project files and batch
files that help you quickly build and evaluate each sample program.

The following table lists the sample programs and their directories.

Directory Description ‘
\A51\ A51 is a sample program for the A51 assembler.
\BADCODE\ BADCODE is a sample program with a number of syntax errors. Use pVision

each error in BADCODE.C. Refer to “BADCQDE. An Example with Syntax i
Errorst on page 105;for more information about this sample program.

\BL51_EX1\ BL51 EX1 demonstrates a bank switching application written in C. This
sample program invokes functions in different code banks. Build this program
using the BL51_EX1.PRJ project file.

\BL51_EX2\ BL51_EX2 demonstrates a C program that has constant messages stored in
different code banks. Build this program using the BL51_EX2.PRJ project file.

\BL51_EX3\ BL51 EX3 demonstrates a bank switching program that has only one module
with functions located in different banks. Build this program using the
BL51_EX3.PRJ project file.

\BL51_EX4\ BL51 EX4 demonstrates a bank switching, Intel PL/M-51 program that calls
functions in different code banks. This program is the PL/M-51 equivalent to
BL51_EX1. Build this program using the BL51_EX4.PRJ project file. The
Intel PL/M-51 compiler is required.

\CSAMPLE\ The CSAMPLE sample program demonstrates a simple addition and
subtraction calculator. This sample program is a multiple module project that
you can build using the CSAMPLE.PRJ project file.

\DHRY\ The DHRY example is a DHRYSTONE benchmark program that calculates
and displays the dhrystones per second for the host CPU. This example is
mainly provided for benchmark enthusiasts. Build this program using the
DHRY.PRJ project file.

\FIB\ The FIB sample program generates fibonacci numbers and shows you how to
use the reentrant function attribute to declare recursive functions. Build this
sample program using the FIB.PRJ project file.

\HELLO\ The HELLO sample program is the embedded 8051 C Hello World program.

program.

\LSIEVE\ LSIEVE demonstrates the large model version of the sieve of Eratosthenes
prime number generator. This example is mainly provided for benchmark
enthusiasts. Build this program using the LSIEVE.PRJ project file.

80 Chapter 6. Using the 8051/251 tools

Directory Description ‘

\MEASURE\ The MEASURE sample C program collects analog and digital data. It
simulates a data acquisition system that might be found in a weather station or

\RTX_EX1\ The RTX_EX1 sample program demonstrates round-robin multitasking using
RTX-51 Tiny. Build this program using the RTX_EX1.PRJ project file.

\RTX_EX2\ The RTX_EX2 sample program demonstrates an RTX-51 Tiny application that
uses signals. Build this program using the RTX_EX2.PRJ project file.

\SAMPL517\ The SAMPL517 sample program provides an RPN-style calculator that takes

advantage of the 80C517 arithmetic processor. Build this program using the
SAMPL517.PRJ project file.

\SSIEVE\ The SSIEVE sample program demonstrates the small model version of the
sieve of Eratosthenes prime number generator. This example is mainly
provided for benchmark enthusiasts. Build this program using the
SSIEVE.PRJ project file.

\TDP\ The TDP sample program demonstrates how to use interrupt-driven serial 1/0
to interface to an alarm clock driven by an interrupt-driven timer. Build this
program using the TDP.PRJ project file.

\TRAFFIC\ The TRAFFIC sample program shows how to control a traffic light using the
RTX-51 Tiny real-time executive. Build this program using the TRAFFIC.PRJ
project file.

\WHETS\ The WHETS example is a WHETSTONE benchmark program that calculates

and displays the number whetstones per second for the host CPU. This
example is mainly provided for benchmark enthusiasts. Build this program
using the WHETS.PRJ project file.

To begin using one of the sample files, you must switch to the directory in which
the sample resides. Then, you may use either the provided DOS batch files or
the uVision for Windows project file to build and test the sample program.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

m HELLO: Your First C51 Program

m MEASURE: A Remote Measurement System

s BADCODE: An Example with Syntax Errors

8051/251 Evaluation Kit 81

HELLO: Your First 8051/251 C Program

The HELLO sample program is located in the \cs1\EXAMPLES\HELLO\ directory.
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source file, HELLO.c, which is listed

below.
¥ o e e e e e e e e e e
HELLO C
Copyright 1995 KEIL Software, I|nc
.. * |
#pragnma DEBUG OBJECTEXTEND CODE /* pragnma |ines can contain */
/* command line directives */
#i ncl ude <reg51. h> /* special function register declarations */
/* for the intended 8051 derivative */
#i ncl ude <stdio. h> /* prototype declarations for 1/0O functions */
/****************/
/* main program */
/****************/
void main (void) { /* execution starts here after stack init */
SCON = 0x50; /* SCON: npde 1, 8-bit UART, enable rcvr */
TMOD | = 0x20; /* TMOD: timer 1, node 2, 8-bit rel oad */
TH1 = Oxf 3; /* TH1: reload value for 2400 baud */
TR1 = 1; /* TR1: timer 1 run */
Tl = 1; /* TI: set Tl to send first char of UART */
printf ("Hello World\n"); /* the "printf' function call */
while (1) { /* An enbedded program does not stop and */
Y Y | /* never returns. W' ve used an endl ess */
} /* loop. You may wish to put in your own */
} /* code were we've printed the dots (...). */

This small application helps you confirm that you can compile, link, and debug
an application. You can perform these operations from the DOS command line,
using batch files, or from pVision for Windows using the provided project file.

Hardware Requirements
The hardware for HELLO is based on the standard 8051CPU. The only on-chip

peripheral used is the serial port. You do not actually need a target CPU because
dScope lets you simulate the hardware required for this program.

HELLO Project File

In pVision, applications are maintained in a project file. The project file
contains names of all source files associated with the project and also tells the

82 Chapter 6. Using the 8051/251 tools

tools how to compile, assemble, and link to generate an executable target
program.

A project file, called HELLO.PRJ, has been created for HELLO. To load this
project file, select the Open command from the Project menu and open the
HELLO.PRJ project file from the \cs1\EXAMPLES\HELLO directory.

Lizi Filas al Typn Dirrame:
If"lurn:| Filsa [pipl ll I = max- TS0 Iﬂ

Editing HELLO.C

You can now edit HELLO.c. Select the Open command from the File menu.
MVision prompts you with the Open File dialog box. Select HELLo.c from the
files list and select the OK button.

Lixl Filax ol Type Dirrgme:

II'." Soanse [C) ll |_= - meax- 1) Iﬂ

8051/251 Evaluation Kit 83

pVision loads and displays the contents of HELLO.C in a window.

== ik BNl Prapes] Hun Qpldas [eds Wiodow Help

] [(] s 0] (1] N S

PELLCT

gy ighl 1908 FEEL Eafbsaps. T

-_— ¥

fprapms OEBNG OETEOTINTIHD 0O0E * pragma Liney can centein shate 081
P T R P T R e LT
Rincluds czegil . h= = apaciil fumction Tegistsr daclarsticna

J% Far the intendsd BIEL decivative
Foncouds <3told .o * PIETALYRE Sl ATATIOMA foT 1 fanctlione =
e TR EE T e TN

£F main program *f
e

wid main (weddl | F gl an §TaE1E haie &flei slash LAkl -
secH = CxEO e gecH: maids 1, B-Blt UART, SnaEls TEWT -
TED |= I=xIb = THED: timsr 1, mcds £, 0=bi% releoed g
TH1 = ExE3 LR ralasd waloe Par 2453 baud T
™1 =i LR H Lkl 1 W LT
T = 1 = i et FI o semd firet char of LT =
prankf { Melle Weridun™ /™ fha “prirkl’ Punelisn call
whils (L} | * En sabsddsd progres dess nat atap ardd +
: 4= gy &% rewr Tafucrm Bs'va ured an sndlaaw i
1 fE lawp,. Tl miy Wwies be pal Qe -
] ® ook waCe WeoEe primted the dets | 1 &y

=1

Compiling and Linking HELLO

When you are ready to compile and link your project, click on the Build All
button on the tool bar or select the Make: Build Project command from the
Project menu. pVision begins to compile and link the source files in your
project and create an absolute object module that you can load into dScope for
testing. During the build, pVision displays the status in a window.

L Project stabs eLLOFRI]

Sowce File HELLOL
Dot Filer HELLO (L

Elnpend Tors: A00244
Smatis Compelisg

84

Chapter 6. Using the 8051/251 tools

When the build is complete, pVision displays a message indicating the build is
finished.

Froject Status [HELLOUFH.)

Souece File HELLO LNE

Dejoct Filee HELLQ

Elnpand Terem: @RI

Sratin Meko Dancesshd — Pogso Linked

You may press Esc at any time to halt the build.

NOTE

You should encounter no errors when you use pVision with the provided sample
projects. If pVision says it cannot find or run the compiler or linker, check your
PATH for the \C51\BIN directory. If it is not there, you must add it so that
pVision can find the compiler and the other tools. You can add the path
specifications in pVision when you select the Environment Pathspecs command
from the Options menu.

8051/251 Evaluation Kit 85

Testing HELLO With dScope

Once the HELLO program is compiled and linked, you can test it with the
dScope debugger/simulator. In puVision, select the DS51 Simulator command
from the Run menu and press Enter when the dScope Command Arguments
dialog box displays.

MVision passes an initialization file (HELLo.INI) to dScope. This file contains
commands for dScope that load the CPU driver DLL and the HELLO sample
program.

When dScope loads, the following screen displays.

Fhe iy Calup Poripharaks | Holp
| o] s a0 4] [[l e [e |kl g
Wode HELLD
Commands Ged Goliured Sepdutl Siepinind Seplessn Sgopd

Ir.mm _ICE_BUHEY I ==

L BORIH BALM
LD i3 Lt S8 3x38 | , BixI0
13 imid maLn |wdady | 0 guptulion SLarlds Fere % Le

i}

Fil SC0E = il fu G0N, mode 0, BB it INET

zl THID |= dx2E /% THID: Eimer 1, mads 2, E-E

[+ THI & @xf); = THI reloed ualus For 904

F4] R L H e Thi Dimer 1 fun

4 Tl i i T, gak TE te asnd Firak

F=1 ‘Wiae T

o prindf {“Hella Marléwn®] fu L ‘prinif” function cal] |Fes——
7 h E P T

i

NOTE

The first time you invoke dScope, you may need to change the fonts and colors
used for the different windows. Select the Colors and Fonts command from the
Setup menu to configure the different windows in dScope.

86

Chapter 6. Using the 8051/251 tools

Running HELLO

To run the HELLO program, click on the Go button in the debug window or
enter g at the command prompt. The HELLO program executes and displays
the text “Hello World” in the serial window.

wlla Barld

-
—
=

After HELLO outputs “Hello World,” it begins executing an endless loop. To
halt execution, click on the Stop button in the debug window or type Ctrl+C.
After you have halted program execution, you may type exit to leave the
dScope debugger.

Single-Stepping Through HELLO

You can single-step through the HELLO program using the Step buttons in the
debug window.

Commardgds Gol GoTlCursl Stepdull Siepinted SlepOwverl Siopl
L : B3DIH _ICE_DUmMY_ | rre | L
C: BEBaH LJHE %29
/00030 main:
T BSB3H H13: MO SCON| @x33) HExS Smplale
19 vaid main [waid) S pxeeution abtarte here afte
28: SCOH = BuaSA; Fu SCOM: mode 1, B-bit UAAT
21 THOD 0= BxdE; S THOD: timer 1, mode 2, 8-B
22: TH1 = Buf3; = THR: relosd value for 290
23: TR1 = 1 Fw TRA: timer 1 run
ay TI i s TI wst TI to eend first
26 intf [("Helle darldyn™] u bhe ' tfF" F Ei Il | |
- prran & dar &h F Fran ursERlen £& Frm——
ETH whdla (1% I i

L stop +
= [+

First, make sure to reset the CPU driver. To do this, make sure program
simulation is halted, then type the following lines at the command prompt:

8051/251 Evaluation Kit 87

reset
g, main

The reset command resets the simulated 8051 CPU. The g, mai n command
begins executing the program and stops when it reaches the main C function.

To step through the HELLO program, click on the StepOver button in the debug
window. Each time you click on this button, the simulator executes one
statement. The current instruction is always highlighted, but the highlight moves
each time you step. You may continue stepping through your program by
clicking on the StepOver button.

You may exit dScope at any time. To do so, halt execution of HELLO and enter
exi t atthe command prompt.

88

Chapter 6. Using the 8051/251 tools

MEASURE: A Remote Measurement
System

The MEASURE sample program is located in the \C51\EXAMPLES\MEASURE\
directory. MEASURE runs a remote measurement system that collects analog
and digital data like a data acquisition systems found in a weather stations and
process control applications. MEASURE is composed of three source files:
GETLINE.C, MCOMMAND.C, and MEASURE.C.

MEASURE records data from two 8-bit digital ports and four 8-bit
analog-to-digital inputs. A timer controls the sample rate. The sample interval
can be configured from 1 millisecond to 60 minutes. Each measurement saves
the current time and all of the input channels to an 8 Kbyte RAM buffer.

Hardware Requirements

The hardware for MEASURE is based on the 80517 CPU. This microcontroller
provides analog and digital input capability. Port 4 and port 5 are used for the
digital inputs and ANO through AN3 are used for the analog inputs. You do not
actually need a target CPU because dScope lets you simulate all the hardware
required for this program.

8051/251 Evaluation Kit 89

MEASURE Project File

The project file for the MEASURE sample program is called MEASURE.PRJ. TO
load this project file, select the Open command from the Project menu and open
MEASURE.PRJ from the \cs1\EXAMPLES\MEASURE directory. Select the Edit
Project command from the Project menu to display the Project Manager dialog
box.

Hownon Fikes
I [¥IT] | | Help |
Dinabile Click in Opes Fils
Irarslatnr: (51 Complos 3] b —
I Abwerys: Duid F inrciude i L kLS

The Project Manager dialog box shows the source files that compose the
MEASURE project. There are three source files in this project.

MEASURE.C This source file contains the main C function for the
measurement system and the interrupt routine for timer 0.
The main function initializes all peripherals of the 80517 and
performs command processing for the system. The timer
interrupt routine, timer0, manages the real-time clock and the
measurement sampling of the system. Timer 0 was used to
maintain compatibility with the 8051 which can be used if
fewer input channels are required.

MCOMMAND.C This source file processes the display, time, and interval
commands. These functions are called from main. The
display command lists the analog values in floating-point
format to give a voltage between 0.00V and 5.00V.

GETLINE.C This source file contains the command-line editor for
characters received from the serial port.

To open a source file from the Project Manager dialog box, double-click on the
filename. To close the Project Manager dialog box, press Esc or click on the
Cancel button.

90 Chapter 6. Using the 8051/251 tools

Compiling and Linking MEASURE

When you are ready to compile and link MEASURE, click on the Build All
button on the tool bar or select the Make: Build Project command from the
Project menu. pVision begins to compile and link the source files in MEASURE
and displays a message when the build is finished.

Once compiling and linking are complete, you are ready to begin testing the
MEASURE sample program.

Testing MEASURE With dScope

The MEASURE sample program is designed to accept commands from the
on-chip serial port. If you have actual target hardware, you can use a host
computer or dumb terminal to communicate with the 80517 CPU. If you do not
have target hardware, you can use dScope to simulate the hardware. You can
also use the serial window in dScope to provide serial input.

Once the MEASURE program is compiled and linked, you can test it with
dScope. In pVision, select the DS51 Simulator command from the Run menu
and press Enter when the dScope Command Arguments dialog box displays.

8051/251 Evaluation Kit 91

The initialization file that pVision passes to dScope automatically loads the CPU
driver and MEASURE program. Once these are loaded, dScope displays the
following screen.

Comnands Ood GoldDersd Sepdall Siepinied Sepdeesdl Sjopd
C:BOI0H _ICE SUMEY =
Fi=03 =300
_UWEETCHER Sarl Pzl S
C: DO s ¥ _UNGE TCSFRTEVTE | D 10) AT RG0S ETe00
[] SETE FCPEHaRLSGOED | B, 3) & el
. BOETH 5T __Dwplher | o mEr
L BO3EH &P [TRt - EE
C: EO35H NP & ‘: £
£ 0t e o | : o Coew
o BEHEH LHF Edmerdi ks Cy=: o
Ci DO s _currenk _ssssursmente “Wiwrw T Sz 0 IR
C:B09EH #BF: iHe Bt —_—
vl saue_gurrenl_seasuresents {0 Sammmbls |
= ra 1z m .{I PT T 1;!522;) -
‘
= | =
=] Caimeare asrlal B0 =
- 1
-
]
]
-
-
]
-
-
[Tk A ASSTGH Tawak Tousbis TAI RS ;
= | |

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description

Clear © Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval | mm:ss.ttt Sets the interval time for the measurement samples. The

interval time must be between 0:00.001 (for 1ms) and
60:00.000 (for 60 minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

92 Chapter 6. Using the 8051/251 tools

Command Serial Text Description ‘

Read R [count] Displays the recorded measurements. You may specify the
number of most recent samples to display with the read
command. If no count is specified, the read command
transmits all recorded measurements. You can read
measurements on the fly if the interval time is more than 1
second. Otherwise, the recording must be stopped.

Quit Q Quits the measurement recording.

Viewing Debug Symbols

The MEASURE sample program is configured for full debug information and
includes public and local symbols, line numbers, and high-level type
information. To view this information, click on the Symbol Browser button on
the tool bar to open the symbol browser window. Then, select the Locals radio
button and the Options check box as shown below.

Lk $F'JE_¢|E']!FIEHT_HEHWFIE|'EHT1[]

lohk TIMERD

D:0xa0308F & | e b E
Lok _PEGD_IMDEX() Fikmra:
D:-8xB8EB30 buffer . . ptr to char F mds
Oogxif@dyn index . . ink F dein.
0:ExBESOET srgo . uchar B e
lesk CLEAR_RECOROS]) -

- OxBEE00E 1dx . . wank

leck HETH) Al

[0x000811 cadbuaf . arrayl15] of cha B gt

=

dScope supports the drag and drop feature of Windows and lets you access the
symbols this way. Use the mouse to drag and drop the idx symbol from the
symbol browser window to the command window. The fully qualified symbol
name with module name and function name are inserted as shown. The
qualifiers are separated by the backslash character (*\’). Select the command
window and press Enter. dScope displays the value of idx.

You may filter the symbols displayed by selecting the memory space filter. If
you clear the data check box, all symbols in the data memory area are removed
from the display.

8051/251 Evaluation Kit 93

You can specify a search mask to limit the symbols displayed. To limit the
symbol list to those beginning with the letter I, enter “I*” and click the Apply
button.

Viewing Memory Contents

dScope displays memory in HEX and ASCII in the memory window. Open the
memory window by clicking on the Memory button on the tool bar. In the
command window, enter the address range you want to view, for example:

D X: 0x0000, X: OxFFFF

Since the memory window cannot show the entire memory range at once, you
may use the scroll bars to scroll through the memory area. The bounds for
scrolling are defined by the address range specified, 0x0000 to OXFFFF for this
example.

l— -
Rece 00 B 82 83 B4 05 06 67 OB 85 60 08 BC O0 0E OF 01IIASETERAHCDEF 7
¥:B000;: 20 B9 D8 B0 B8 90 59 09 D0 B9 B o9 B9 9O B0 BO -
0078, OO 00 00 OO B0 00 00 00 O0 0O 00 OD B0 00 0D a0

¥:B020: 99 B9 0P 50 PG 0P 50 DB DD 00 B0 09 0O 90 0@ BE_......
¥:80%0; D0 89 68 20 B2 08 20 @8 OO 80 B8 oD B2 GO o0 BO ., nr

X:G9ED: DO 8O 98 0O BR 90 0O 09 D0 00 @0 09 B 90 o9 B
¥:85%50: &b B9 B8 SO B8 OB 90 B8 90 99 B o0 BO B D BO
Kool OO 00 00 o0 00 00 00 00 o0 00 00 OO 00 00 0B 00 ...l
¥:88TH: B0 B9 DB B0 BB G0 B9 OB DD B9 B 09 BO B0 6@ BE_......
WoOokB; OO0 00 08 00 80 00 00 @0 OO0 20 @0 o0 90 00 D BO

¥:0000: 09 B9 0P 5O DG 90 GO D9 0D OO @0 09 9O @0 oW B_......
¥:B0AE; Db 89 B8 50 B2 D @0 B8 OO0 80 B0 D B9 BE o0 BO

X:0080: 00 00 00 o0 00 00 00 00 00 00 00 OO 00 00 00 00 B
A I |

To display the on-chip data memory, enter the following in the command
window.

D |: 0x0000, I:OxFF

dScope can dynamically update the memory window while your application is
running. To toggle dynamic updating, select the Update Memory window
command from the Setup menu. When Update Memory window is checked,
dynamic updating is enabled.

94 Chapter 6. Using the 8051/251 tools

Changing the View Mode

dScope lets you change the view mode in the debug window. Display the debug
window using the debug button on the tool bar. Then, to change the view mode,
open the Commands menu in the debug window and select View High level,
View Mixed, or View Assembly. For example, View Mixed changes to the
mixed source and assembly display.

— T R - |
Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
Eli: B0 1 fu inbernal Baul:lll ™ |“
HC-B1FaH 2212 SETH B e=03._T]
Fik ¥ PCON v @xi0 Fe oaet to BE0G BI
21
FAE #u melpp Ehe Eimer 0 inBerrupt =7
C.B1F2H ®213- ORL PCON(BxET), HGxan |
E; THE® = PERIOD o oael tlmer Fd--':
GRS ®216 MR THO[BxBC) , HE=DE
F4 e TLB = PERIOD
ComiFes &7 HG TLE[D=8R] , Hi=0E
ZIE: THOD = TMOD | BuBZ: fu select mode 2
C-O1FEH LFIF] (i THOO[Bx&8]) , B0=03
218: TRE = 1: im start tiwer @|(Cfesamb
r.pIFFH __ ®319. SFTA TOR[A M
e [Ehap +
| | [

The debug window shows intermixed source and assembly lines.

Program Execution

Before you begin simulating the MEASURE program, use the Debug, Register,
and Serial buttons on the tool bar to display the debug, register, and serial
windows. You may disable other windows if your screen is not large enough.

From the toolbar, select the reset button to reset dScope. In the debug window,
select the View Mixed command from the Commands menu. Then, click on the
SteplInto button once.

8051/251 Evaluation Kit 95

Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
[ccmrm — ww Re.sexrr | *
e
R S— & |
€. 1ATHM T
C=TATEH MZ RB OxTRTE
Co1RTER HOU SR Oxi1) HExEs
C-1TATEH L JHP Bul@BC IE
C:1AZIH LP saln(BxIED)
ELIReI i T
C=1A3%H ML A, @*0PTR
(=SB [1 12 INE opTE
C-1A8TH HioA) Ag.A | e Tomeu
[=ER L MCRIC A, Ba*0PTR
LC_1080H ThC [BTE
e Stop +
o] N

The Steplinto button lets you single-step through your application and into
function calls. Click on the Steplnto button a few more times to get to the loop
which clears the on-chip data space of the CPU.

Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
C:1RTHH WA RE_®@xTF frrs LS
c.tarem w4
C:TATEH o2 RB. Sx1RTE
CoTATEE HGU SP{0xiE1) HDES
E:-1TATEH LJHP BulEEE IE
C:1a&IH LJHE malmlBxVED)
ELIReI i T
C-1A8%H HOLIC A, W+0FTR
(=SB IiE 1 [HE opTE
C:TA3TH M) AE.A m E
- 1A HCAIC A, B*0FTR
LC 1 odok TR NOTE
e Stop +
o] N

To skip the initialization code and go directly to the main function, select the
command window and enter “G,main”. dScope executes the startup code and
halts on the first statement in the main function.

Go Until Current Cursor Line

The current cursor line is the line which marks the current assembly or
high-level statement. You can move the line using the keyboard or the mouse.

dScope lets you use the current cursor line as a temporary breakpoint. Use this
feature to skip over code in your application. For example, you can skip over the

96 Chapter 6. Using the 8051/251 tools

initialization code and stop one instruction before the main function is called.
You can do this in one of two ways:

m Variant 1: Move the cursor line to the LJMP main instruction. You can
use the cursor keys or you can click the mouse on that line. Click on the
GoTilCurs button in the debug window. dScope starts execution at the
current program counter and stops at the current cursor line.

= Variant 2: Double-click, with the right mouse button, on the LJIMP main
instruction. This makes the selected line the current cursor line, starts
execution from the current PC, and stops when the current line is reached.

The program counter is now at the LIJIMP main instruction.

Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
C:IRTH MO Al ®ExTF | G |f
C:1ATTH CLE n
&L 1ATHH e
C:1ATEH DNE B, Gx1 RTE
Co1ATEM Hoil SP0xE1), HExES
C:1ATEH LJsP Bl (EEC
C:1AETH L®F mainiB=iED) |
G 1REAH CLR i
C-1085H MU 0, E+IPTR | s |
£ 1AdEH TR OPTR
C:TRBTH (] AB.A |E|
C: 1REEH CLE q
- 18 MOUE 0, BRtOFTR Asambiie..

TR neTe

rrided shop +

| [+

NOTE

After performing this command, the current cursor line and the current program
counter (PC) line are the same. The background color used for the line is the
PC highlight color.

Stepping Through High-Level Statements

Click on the Stepinto button in the debug window and dScope jumps to the main
function of the MEASURE sample program. Select the View High level
command from the debug window Commands menu.

8051/251 Evaluation Kit 97

_«

Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd

C-@1ERH CNE A6, ®BAxEE H137T(Bx1CH) [r™) T
C-B1ESH CJNE AT BAxEZ HI13T[BxICH] I—J
E.OECH w199, RET
LI |
201:

GENE 1 e o]]]

FHE: S EHHREEHAEEHHEAE A S EHEE S ML PROGSAM HHHEEEHEE =]
ENN e)]) i i e T

205, waid main [uedd 3 [e main enbry fal
206: idats char omdbuf [15] #% command input ||| ies Toses |
T unaigned char i Fu idex far com|
288: unsigned int ddu: /% inden For cir|l SSsamble
L Be.

il shop *
| [*

When viewing your application in high level mode, the meaning of a step
changes to mean one high-level statement instead of one assembly instruction.
Click on the Stepinto button and watch as the current program counter line
moves down the screen.

NOTE
The StepOver button operates much like the StepInto button with the exception
that a function call is considered a single statement.

Stepping Out of a Function

On occasion, you may accidentally step into a function unnecessarily. You can
use the StepOut button to complete execution of that function and return to the
statement immediately following the function call.

NOTE
You cannot StepOut from the main function because it is invoked by a long jmp
(LIMP) rather than a call instruction.

Setting and Removing Breakpoints

You can set an execution breakpoint in the debug window by double-clicking on
the desired source line. The selected line is highlighted and a [BR n] label is
displayed at the end of the line. If we set a breakpoint on the TRO = 1 statement,
the debug window appears as follows:

98

Chapter 6. Using the 8051/251 tools

— T T
Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
i H unsigned int ids: e irsdex for EI'Il ™ |“
a1 H
Fil fm imitislize the serial interface =7
Z11: SCON = BwSA; flil’.lil‘.‘lﬂ“
F4F3 BD & 1; Fu imbernal Bagd|
Z13: PCON 1= BxBE v et to BERG B
Fik-H #/n sptup the tiser @ interrupt =/
ZIE: THB = PERIOD Ao gl tlmer p-l-':
nr TL & PERIOD
ZIE: THOD = TMOD | BuBZ: /v select mode zl
219; TRB = 1; f= [BR 8]
Z#A: ETH = 1: /v grsble tiper ||(LARSamble.
F¥1. _Fol = i3 alakm]l i e
il shap *
| [*

Click on the Go button and dScope starts execution from the current program
counter and stops when the breakpoint is reached. To remove a breakpoint,
double-click on the line containing the breakpoint.

Call Stack

dScope internally tracks function nesting as the program executes. You can view
the function nesting at any time by opening the Call Stack window. Use the Call
Stack button on the tool bar to display Call Stack window.

1 ClaADEh nsd
3 Cilainze GETEEY

1 el H _getimn
i ClsFED man

This dialog box lists all currently nested functions. Each line contains a nesting
level number, the numeric address of the invoked function, and the symbolic
name of the function if debug information is available.

You can display the caller of a function by selecting the function from the list.
Then, you can use the Show invocation button to display the function call in the
debug window.

8051/251 Evaluation Kit 99

Port Inputs

dScope provides two different ways to set digital and analog port inputs. You
can use the Peripheral menu in the main window to view and change the status of
input lines or you can enter I/O values in the command window. The following
commands change port values in the command window.

PORT4=0x23 set digital input PORT3 to 0x23.
Al N1=3. 3 set anal og input AINL to 3.3 volts.

Signal Functions

dScope lets you create signal functions to provide an input signal for digital or
analog inputs. To load a signal function, halt program execution by clicking on
the Stop button in the debug window and enter the following command in the
command window.

I NCLUDE anal og. i nc

This loads the analog function from the file ANALOG.INC. This file defines a
signal function that adjusts the analog value that appears on analog channel 0.
This function appears as follows.

SI GNAL void anal og0 (float limt) {
float volts;

printf ("ANALOG (%) ENTERED\n", limt);
while (1) { /* forever */
volts = 0;
while (volts <= limt) {
ain0 = volts; /* anal og i nput-0 */
twat ch (30000); /* 30000 Cycl es Tine-Break */
volts += 0.5; /* increase vol tage */
}
volts = limt-0.5;

while (volts >= 0.5) {
ain0 = volts;
twat ch (30000); /* 30000 Cycl es Tine-Break */
volts -= 0.5; /* decrease vol tage */

}
}
}

After loading the analog include file, enter the following commands in the
command window.

ANALO®D (5. 0)
G

100 Chapter 6. Using the 8051/251 tools

These commands set the limit for analog channel 0 to 5.0 volts and start program
execution.

Select the serial window and type D Enter. You should see the analog channel 0
signal begin swinging from 0 to 5 volts.

Trace Recording

It is common during debugging to reach a breakpoint where you require
information like register values and other circumstances which led to the
breakpoint. dScope provides trace recording for this purpose.

To enable trace recording, select the Record trace command from the Commands
menu to toggle instruction trace recording. When trace recording is enabled,
dScope records up to 512 assembly instructions and register contents.

You can use trace recording with the MEASURE example. Start running the
MEASURE program (click on the Go button in the debug window) and select
the serial window. MEASURE displays a menu and waits for input after
displaying Command. In the serial window, enter d.

When you enter this command, MEASURE begins to display measurement
values, the record time, two port values, and finally the analog input values.

—

| Time | T hbzmm; s | @@t Eise |
| Interval | 1 sm:s5. tkt | st interusl time I
| Claar | € | elosr Eesburement Fecords I
| Buit I @ | quit measuressnt recording |
| Start | & | start measurement recording I
= e e e e e e e
cEmand- d

isplay current Measuresents: (ESC o abart)
mey 000 @9, 105 PRFF P FF QKO B, SOU ARY 0, 00U BNE D, 90U AN 0,000

o O S —

The serial window displays what you would see on a dumb terminal connected to
the 80517’s serial port.

Click on the Stop button in the debug window. This halts program execution
immediately. Click on the View Trace button to view the trace buffer.

8051/251 Evaluation Kit 101

Commands GOof doflfwrs] Siepiautl Slepinbol StepOver! Sjopd
% C:1511M RLE f | G |f
=% C-15128 (L] n3.A
-2 S5 SLupp ARl
=1 C:151%H JC Bx1518
115188 DLMZ RS 1583 |
1518 (2] n.R3
151EH B B0 .5, 01523
151EH =] 1
151FH PO A BER)
1521 Shsp H
15224 ORL n,F@ |E|
15234 CPL fxdd 5
1529 PUSH M{BwER]) Arasarmiiie
153 TH TR 03
Kl [shop +
| | [

The upper portion of the debug window shows the trace history. The lower
portion of the debug window shows instructions from the program counter. The
program counter line is the delimiter between the trace history and instructions
not yet executed.

The trace history lines begin with negative numbers. The newest trace buffer
entry is —1. The oldest entry is -511. When the buffer overflows, the oldest
entries are removed to make space for new entries.

You may scroll into the trace buffer using the keyboard or the mouse. The
register window shows the register contents for the selected instruction in the
trace buffer.

NOTE
Program execution must be stopped before you can view the trace buffer.

Watchpoints

Watchpoints are used to view the contents of simple variables, structures, and
arrays. You may setup watchpoints using the Watchpoints dialog box. To
display this dialog box, select the Watchpoints command from the Setup menu.

102

Chapter 6. Using the 8051/251 tools

The following steps show you how to = | I

define two watchpoints: one for the Duitunl wokch disintions:
variable sindex which is an unsigned SN

int and one for the structure current

which contains a nested time struct.

1-[| -
To add a watchpoint for sindex: | km sotocied |
Type sindex inthe Exprinputline o
and click on the Define watch button. I

[iling wokch B syt |
To add a watchpoint for current: Harsbut sulput basu. Outpat linu Mo,
Type current inthe Exprinput) I drn T Bingle F Bulipie

line, select the Multiple radio button
to display structure members on
separate lines, and click on the
Define watch button.

Llozm ” Help |

The watch window now contains the two watch expressions just defined.

The first watch expression shows the = wwxn A
value of sindex on a single line. | (00) sindex: 0=p000 |
(&) _r.'l.rrinl:)
L1 L

The second watch expression for current '::E:I;ﬂ-
generates much more output. Structure iy
members display on separate lines and Raacl
are indented to reflect the nesting level. ,',.',m=g
The last few lines display the data stored ::;::g“
in the analog array. [ej=a

(10
The watch window updates at the end of Ei:jg
each execution command (Steplinto,)
StepOut, or Go). You may configure | | -

dScope to periodically update the watch
window during execution by selecting the
Update Watch Window command from the Setup menu.

Breakpoints
You use breakpoints to stop program execution on a given address or a specified

condition. Execution breakpoints are the simplest form; a function address or
line number specifies where to stop execution.

8051/251 Evaluation Kit 103

You may want to halt program execution when a variable contains a certain
value. The following example shows you how to stop program execution when
the current.time.sec structure member is set to 3.

Select the Breakpoints command from the Setup menu to display the Breakpoints
dialog box. In the Expression input line, enter current.time. sec==3. Inthe
Count input line, enter 1. Select the Write check box (this option specifies that
the break condition is tested only when the expression is written to).

When you are finished, click on the

Define button to set the breakpoint. curmint Hr--n--
To test the breakpoint condition
perform the following steps: | |
1. Reset dScope, |
[Eankiad
2. Begin executing the MEASURE S

sample program (click on the Go
button in the debug window),

Capresainm -II.IIIIIll L L DR T

Cujmiee vl
Aroean:

1
Cuwrt = }

3. Press Enter in the serial window
at the MEASURE command

prompt. patinn || Etow symbts |

After a few seconds, dScope halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

Using the Performance Analyzer

dScope lets you perform timing analysis of your applications using the integrated
performance analyzer. You can specify an address range or a function for
dScope to use. To prepare for timing analysis, enter the following commands in
the command window.

PA main

PA tinmer0

PA cl ear _records

PA neasur e_di spl ay

PA save_current _measur enment s

PA read_i ndex

RESET PA /* Initialize PA */

104 Chapter 6. Using the 8051/251 tools

These commands create the performance analyzer address ranges for timing
statistics. You may create or view the ranges with the Setup Performance
Analyzer command in the Setup menu.

Perform the following steps to watch the performance analyzer in action:

1. Open the performance analyzer window using the button on the tool bar. The
display shows the ranges defined above. The <unspecified> line
accumulates all execution time outside the defined ranges,

2. Reset dScope,

3. Start program execution by clicking on the Go button in the debug window,

4. Select the serial window and type S Enter D Enter.

The performance analyzer window shows a bar graph for each range.

m

‘Commenanids

O% 18 20 30 4B 56 6O TH 89 MIe9T —
Y Y Y Y) I | (|

cunspecifiedy
soir:
timers : N
olasr _records:
measure_disp lay I
pave_current _seasuresents [l
read_index

man bma miee bme aeg e leinl hne Y cmank
CCITER CETEETER CETTIToN TR BT

The bar graph is dynamically updated and shows the percent of the time spent
executing code in each range. Click on the range to see timing statistics for each
individual range.

8051/251 Evaluation Kit 105

BADCODE: An Example with Syntax
Errors

The \cs1:ExAMPLES\BADCODE\ directory contains a file called sapcope.c. This
file is used to demonstrate how pVision interacts with the compiler to help you
locate errors and warnings in your source program.

Open the Babcobe.c file using the Open command in the File menu. Select the
Compile File command from the Project menu to compile the file. After
compilation, pVision determines that there are errors and displays an error
window for you to peruse.

You may use the cursor keys in the error window to scroll through the errors
generated by the compiler. As you move from line to line, the source window is
updated to reflect the line on which the error was encountered.

e B8R [Sojeld Hon Upleis ook Melrs Hap

()] [[l foslesdead [(o) (3] (R IEER

ADCOOE . C

Eopyrlght 1kl I mafiyacs, Ind
“fer': regolres MESI-otyls protetyrs
FFILEX STCCT rMAar "o

EFTlAE STEGD Daar COEDC

‘om0t ondefined Losetliier

FFTEEX STLCT THAT '

I9E: "prink?”: missing Funcilen-preiatyps
raRLElAgErT | i laEel §LLAg

rrar Ji5: pmfsrsivatsd stringichar conat

rzar 1il: rpriex srrer mear 'prinkd

This mource file im full of sccocs Tou can une o
bearinnl sprerd iS Ui il

pold mads (woeld, wald)
=

aryns e
iy Pl Do

[Ealleer = [

et (L= Br 4 « Looa: d

1
prink? "1 is ®oia™, 437

fallow 4= 1
prinkEf ["Fellor = Bldm,. Felloer

prinif ["End of Leopin®i
I

=] E CH ¥

Erod 10 urdysaen B oiescies ok FIEALY gl

When the error window displays, it may cover a portion of the source window.
Use the tile vertical or tile horizontal button to display the windows side-by-side.

8051/251 Evaluation Kit 107

Chapter 7. Hardware Products

Keil Software offers a number of hardware products that you can use to assist in
8051/251 software development. Currently, our hardware products include:

s ProROM EPROM Emulator,

s MCB517A Evaluation Board,

s MCB251SB Evaluation Board.

Each of these products is described in the following sections.

ProROM EPROM Emulator

ProROM is an EPROM emulator that connects between the parallel printer port
of your PC and the ROM socket of your target hardware. With ProROM, you
can rapidly develop and test your embedded target program.

It only takes a few seconds to download 64 Kbytes of program code to ProROM.
You no longer have to rely on or wait for EPROM programmers and erasers that
may take several minutes between software iterations.

ProROM comes with an easy to use loader program that downloads your binary
or Intel HEX files. Additionally, you can use ProROM with the pVision
development environment to automate your build and load development cycle.

The ProROM EPROM emulator comes complete with:

m User’s Manual,

m Software and file conversion utilities,
s ProROM EPROM Emulator,

m 28-pin DIP interface cable,

m PC parallel-port cable.

ProROM provides a quick, convenient solution for rapid software development.

108 Chapter 7. Hardware Products

MCB517A Evaluation Board

The MCB517A evaluation board is a single board computer that supports the
Siemens 80C517(A) microcontroller. The MCB517A lets you write and test
code for the 80C517(A) using the Keil Software 8051 development tools and the
8051 monitor.

The MCB517A includes a user’s manual that clearly describes the board and an
evaluation kit that includes a 2 Kbyte size-limited tool set. The tools provided
include:

m The C51 compiler,

m A5l assembler,

= pVision/51 IDE for Windows,

m dScope-51 simulator for Windows,

= 8051 Monitor program and dScope interface DLLs,
m all the necessary utilities,

m and several example programs.

The 8051 monitor lets you download and execute 8051 applications you develop
using the tools included with the package. You can build applications using
pVision and the C51 compiler and A51 assembler, and you can test and debug
applications using dScope and the monitor.

The MCB517A is a complete starter package for anyone interested in the
Siemens 517. Since the Siemens 517 CPU is a superset of the 8051 and 80515
the MCB517A board can be used also for projects using the 8051, 80C515(A)
and 80C517(A). The MCB517A uses for communication with the Monitor the
2nd serial interface of the 517 CPU, this frees up the standard 8051 serial
interface for the user application. The MCB517A is a complete starter package
for anyone interested in the Siemens 517.

8051/251 Evaluation Kit 109

MCB251SB Evaluation Board

The MCB251SB evaluation board is a single board computer that supports the
Intel 80C251SB microcontroller. The MCB251SB lets you evaluate all
operating modes of the 251 including page mode, non-page mode, source mode,
and binary mode. Board configuration is accomplished using clearly labeled DIP
switches.

[t rs232 o powe o
| ¢ \r w20 " s fe—— :IC:I"E’
% :||':| 540 [
C) 1995, KEIL SOF TWARE INC,
vu() L I .;l:‘!;

VCC
ALL RIGHTS RESERVED = w L “Elml:l:l/
xi
.0 m

] o "D;I % 276010

[
[
] &{] o3 ‘| B8o2s1
<o
O

w 431000

— I >RSI iCB251s
C SOFTWARE M

EXT R5232 -EIIJ-I P L o | El g 573 ||:|mh oPsH ||:|
m@rﬁs INT lul =] [128 B8l o
R “mé |:| |:| ; 2 ||_|"”I: = |E
L W w © BISPEISITE

The MCB251SB includes a user’s manual that describes the board and data
books that describe the 251 architecture. A 2 Kbyte size limited tool set is also
included with the MCB251SB. The tools provided include:

m The C251 compiler,

m A251 assembler,

= pVision/251 IDE for Windows,

m dScope-251 simulator for Windows,

= 251 Monitor program and dScope interface DLLs,

m all the necessary utilities and example programs to help you get started.

The 251 monitor program comes installed on the board. The monitor lets you
download and execute 251 applications you develop using the tools included
with the package. You can build applications using pVision and the C251
compiler and A251 assembler, and you can test and debug applications using
dScope and the monitor.

110 Chapter 7. Hardware Products

The MCB251SB is a complete starter package for anyone interested in the
Intel 251.

8051/251 Evaluation Kit 111

Chapter 8. Real-Time Kernels

This chapter discusses the different real-time operating systems that are available
for the 8051 and 251 microcontrollers.

RTX-51 Real-Time Operating System

The RTX-51 real-time operating system is a multitasking kernel for the 8051
family of processors that simplifies the software design of complex, time-critical
applications.

There are two distinct versions of RTX-51:

RTX-51 Full which performs both round-robin and preemptive task switching
using up to four task priorities. RTX-51 Full works in parallel
with interrupt functions. Signals and messages may be passed
between tasks using a mailbox system. You can allocate and
free memory from a memory pool. You can force a task to wait
for an interrupt, time-out, or signal or message from another task
or interrupt.

RTX-51 Tiny which is a subset of RTX-51 Full. RTX-51 Tiny easily runs on
single-chip 8051 systems without any external data memory.
RTX-51 Tiny supports many of the features found in RTX-51
Full with the following exceptions:

1. Task switching is accomplished by round-robin multitasking
and signals.

2. Preemptive task switching is not supported.
3. No message routines are included.

4. No memory pool allocation routines are available.

The rest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

Introduction

Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, a real-time operating system (RTOS) allows

112 Chapter 8. Real-Time Kernels

flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS which is easy to use. RTX-51 works
with all 8051 derivatives.

You write and compile RTX-51 programs using standard C constructs and
compiling them with C51. Only a few deviations from standard C are required
in order to specify the task ID and priority. RTX-51 programs also require that
you include the real-time executive header file and link using the BL51 code
banking linker/locator and the appropriate RTX-51 library file.

Single Task Program

A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of as a
single task which is executed continuously. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
count er ++; /* increment counter */
}

}

Round-Robin Program

A more sophisticated C program may implement what is called a round-robin
pseudo-multitasking scheme without using a RTOS. In this scheme, tasks or
functions are called iteratively from within an endless loop. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
check_serial _io ();
process_serial _cnmds (); /* process serial input */

check_kbd_io ();
process_kbd_cnds (); /* process keyboard input */

adj ust _ctrlr_parms (); /* adjust the controller */

count er ++; /* increment counter */

8051/251 Evaluation Kit 113

Round-Robin Scheduling With RTX-51

RTX-51 also performs round-robin multitasking which allows quasi-parallel
execution of several endless loops or tasks. Tasks are not executed concurrently
but are time-sliced. The available CPU time is divided into time slices and
RTX-51 assigns a time slice to every task. Each task is allowed to execute for a
predetermined amount of time. Then, RTX-51 switches to another task that is
ready to run and allows that task to execute for a while. The time slices are very
short, usually only a few milliseconds. For this reason, it appears as though the
tasks are executing simultaneously.

RTX-51 uses a timing routine which is interrupt driven by one of the 8051
hardware timers. The periodic interrupt that is generated is used to drive the
RTX-51 clock.

RTX-51 does not require you to have a main function in your program. It
automatically begins executing task 0. If you do have a main function, you must
manually start RTX-51 using the os_create_task function in RTX-51 Tiny and
the os_start_system function in RTX-51.

The following example shows a simple RTX-51 application that uses only
round-robin task scheduling. The two tasks in this program are simple counter
loops. RTX-51 starts executing task 0 which is the function names j obo. This
function adds another task called j ob1. After j ob0o executes for a while,
RTX-51 switches to j ob1. After job1l executes for a while, RTX-51 switches
back to j obo. This process is repeated indefinitely.

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void jobO (void) _task_ 0O {

os_create_task (1); /* mark task 1 as ready */
while (1) { /* loop forever */
count er O++; /* update the counter */

}
}

void jobl (void) _task_ 1 {
while (1) { /* loop forever */
count er 1++; /* update the counter */
}
}

114 Chapter 8. Real-Time Kernels

RTX-51 Events

Rather than waiting for a task’s time slice to be up, you can use the os_wait
function to signal RTX-51 that it can let another task begin execution. This
function suspends execution of the current task and waits for a specified event to
occur. During this time, any number of other tasks may be executing.

Using Time-outs with RTX-51

The simplest event you can wait for with the os_wait function is a time-out
period in RTX-51 clock ticks. This type of event can be used in a task where a
delay is required. This could be used in code that polled a switch. In such a
situation, the switch need only be checked every 50ms or so.

The next example shows how you can use the os_wait function to delay
execution while allowing other tasks to execute.

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void jobO (void) _task_ 0 {

os_create_task (1); /* mark task 1 as ready */
while (1) { /* |l oop forever */
count er O++; /* update the counter */
os_wait (K. TMO, 3, 0); /* pause for 3 clock ticks */

}
}

void jobl (void) _task_ 1 {

while (1) { /* |l oop forever */
count er 1++; /* update the counter */
os_wait (K. TMO, 5, 0); /* pause for 5 clock ticks */

}
}

In the above example, j ob0o enables j ob1 as before. But now, after
incrementing counter0, job0 calls the os_wait function to pause for 3 clock
ticks. At this time, RTX-51 switches to the next task, which is j ob1. After
jobl increments counter 1, ittoo calls os_wait to pause for 5 clock ticks.
Now, RTX-51 has no other tasks to execute, so it enters an idle loop waiting for
3 clock ticks to elapse before it can continue executing j obo.

The result of this example is that count er 0 gets incremented every 3 timer ticks
and counter1 gets incremented every 5 timer ticks.

8051/251 Evaluation Kit 115

Using Signals with RTX-51

You can use the os_wait function to pause a task while waiting for a signal (or
binary semaphore) from another task. This can be used for coordinating two or
more tasks. Waiting for a signal works as follows: If a task goes to wait for a
signal, and the signal flag is O, the task is suspended until the signal is sent. If
the signal flag is already 1 when the task queries the signal, the flag is cleared,
and execution of the task continues. The following example illustrates this:

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void jobO (void) _task_ 0 {

os_create_task (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
if (++counter0 == 0) /* update the counter */
os_send_signal (1); /* signal task 1 */

}
}

void jobl (void) _task_ 1 {

while (1) { /* |l oop forever */
os_wait (KSIG 0, 0); /* wait for a signal */
count er 1++; /* update the counter */

}
}

In the above example, j ob1 waits until it receives a signal from any other task.
When it does receive a signal, it increments count er 1 and again waits for
another signal. j obo continuously increments count er 0 until it overflows to 0.
When that happens, j ob0 sends a signal to j ob1 and RTX-51 marks j ob1 as
ready for execution. j obl does not start until RTX-51 gets its next timer tick.

Priorities and Preemption

One disadvantage of the above program example is that j ob1 is not started
immediately when it is signaled by j ob0. In some circumstances, this is
unacceptable for timing reasons. RTX-51 allows you to assign priority levels to
tasks. When a higher priority task becomes available, it interrupts or preempts a
lower priority task. This is called preemptive multitasking or just preemption.

NOTE
Preemption and priority levels are not supported by RTX-51 Tiny.

116

Chapter 8. Real-Time Kernels

You can modify the above function declaration for j ob1 to give it a higher
priority than j ob0. By default, all tasks are assigned a priority level of 0. This
is the lowest priority level. The priority level can be 0 through 3. The following
example shows how to define j ob1 with a priority level of 1.

void jobl (void) _task_ 1 _priority_ 1 {

while (1) { /* |l oop forever */
os_wait (K.SIG 0, 0); /* wait for a signal */
count er 1++; /* update the counter */

}
}

Now, whenever j ob0 sends a signal to j obi, j ob1 starts immediately.

Compiling and Linking with RTX-51

RTX-51 is fully integrated into the C51 programming language. This makes
generating RTX-51 applications very easy to master. You do not need to write
any 8051 assembly routines or functions. You only have to compile your
RTX-51 programs with C51 and link them with the BL51 code banking
linker/locator.

For example, you should use the following command lines with RTX-51 Tiny.

C51 EXAMPLE. C
BL51 EXAMPLE. OBJ RTX51TI NY

Use the following command lines to compile and link with RTX-51.

C51 EXAMPLE. C
BL51 EXAMPLE. OBJ RTX51

Interrupts

RTX-51 works in parallel with interrupt functions. Interrupt functions can
communicate with RTX-51 and can send signals or messages to RTX-51 tasks.
RTX-51 Full lets you assign an interrupt to a task.

Message Passing
RTX-51 Full supports message exchange between tasks with the following

functions: isr_recv_message, isr_send_message, os_send_message, and
0s_wait.

8051/251 Evaluation Kit 117

A message is a 16-bit value which can be interpreted as a number or as a pointer
to a memory block. RTX-51 Full supports variable sized messages using a
memory pool system.

CAN Communication

Controller Area Networks are easily implemented with RTX-51/CAN.
RTX-51/CAN is a CAN task integrated into RTX-51 Full. An RTX-51 CAN
task implements message passing via the CAN network. Other CAN stations can
be configured either with or without RTX-51.

BITBUS Communication

RTX-51 Full includes both master and slave BITBUS tasks supporting message
passing with the Intel 8044.

Events
RTX-51 supports the following events for the os_wait function:

m A Timeout suspends the running task for a defined number of clock ticks.

m An Interval is similar to a timeout, however, the interval is intended for use
with tasks that must execute synchronously.

m Signals are used for inter-task coordination.
m Messages are used for exchange of messages. t
= An Interrupt lets a task wait for an 8051 hardware interrupt. T

m Semaphores are used for management of shared system resources. T
t These events are available only in RTX-51 Full.

118 Chapter 8. Real-Time Kernels

RTX-51 Functions

The following table lists some of the RTX-51 functions along with a brief
description and execution timing (for RTX-51 Full).

Function Description CPU Cycles ‘

isr_recv_message t Receive a message (call from interrupt). 71 (with message)

isr_send_message t Send a message (call from interrupt). 53

isr_send_signal Send a signal to a task (call from interrupt). 46

os_attach_interrupt ¥ Assign task to interrupt source. 119

os_clear_signal Delete a previously sent signal. 57

os_create_task Move a task to execution queue. 302

os_create_pool Define a memory pool. 644 (size 20 * 10 bytes)

os_delete_task Remove a task from execution queue. 172

os_detach_interrupt T Remove interrupt assignment. 96

os_disable_isr t Disable 8051 hardware interrupts. 81

os_enable_isr T Enable 8051 hardware interrupts. 80

os_free_block T Return a block to a memory pool. 160

os_get_block T Get a block from a memory pool. 148

os_send_message T Send a message (call from task). 443 with task switch

os_send_signal Send a signal to a task (call from tasks). 408 with task switch
316 with fast task switch
71 without task switch

os_send_token t Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice T Set the RTX-51 system clock time slice. 67

os_wait Wait for an event. 68 for pending signal
160 for pending message

t These functions are available only in RTX-51 Full.

Additional debug and support functions in RTX-51 Full include the following:

Function Description ‘
oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.
os_check_mailboxes Returns information about the state of all mailboxes in the system.
os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.
os_check_semaphores Returns information about the state of all semaphores in the system.
os_check_task Returns information about a specific task.

os_check_tasks Returns information about all tasks in the system.

8051/251 Evaluation Kit 119

CAN Functions

The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers are in preparation.

CAN Function Description ‘
can_bind_obj Bind an object to a task; task is started when object is received.
can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.

can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.

can_unbind_obj Disconnect the binding between a task and an object.
can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

120

Chapter 8. Real-Time Kernels

Technical Data

Description

Number of tasks
RAM requirements

Code requirements
Hardware requirements
System clock

Interrupt latency
Context switch time

Mailbox system

Memory pool system

Semaphores

RTX-51 Full

256; max. 19 tasks active
40 .. 46 bytes DATA

20 .. 200 bytes IDATA (user stack)

min. 650 bytes XDATA
6KB .. 8KB

timer O or timer 1

1000 .. 40000 cycles

< 50 cycles

70 .. 100 cycles (fast task)
180 .. 700 cycles (standard task)
depends on stack load

8 mailboxes with 8 integer entries
each

up to 16 memory pools
8 * 1 bit

RTX-51 Tiny

16

7 bytes DATA
3 * <task count> IDATA

900 bytes

timer O

1000 .. 65535 cycles
< 20 cycles

100 .. 700 cycles

depends on stack load

not available

not available
not available

8051/251 Evaluation Kit 121

Chapter 9. Command Reference

This chapter briefly describes the commands and controls for the Keil Software
8051 and 251 development tools. Commands and controls are listed in a tabular
format along with a description. Underlined characters represent abbreviations

for the particular control or directive.

A51/A251 Macro Assemblers

Invocation: A51 sourcefile [directives]
A251 sourcefile [directives]|
A51 @onmandfile
A251 @omuandfil e
where
sourcefile isthe name of an assembler source file.

commandfile isthe name of a file which contains a complete command line
for the assembler including a sourcefil e and di recti ves. You
may use a command file to make assembling a source file easier
or when you have more directives than fit on the command line.

directives arecontrol parameters which are described in the following

table.
A51 / A251 Controls Meaning ‘
CASE f Enables case sensitive symbol names.
DATE(date) Places date string in header (9 characters maximum).
DEBUG Includes debugging symbol information in the object file.
ERRORPRINT](filename)] Outputs error messages to filename.
INCLUDE(filename) Includes the contents of filename in the assembly.
MACRO Enables standard macro processing.
MODBIN Selects 251 binary mode (default).
MODSRC % Selects 251 source mode.
MPL Enables Intel-style macro processing.
NOAMAKE Excludes AutoMAKE information from the object file.
NOCOND Excludes unassembled conditional assembly code from the

listing file.

NOGEN Disables macro expansions in the listing file.
NOLINES Excludes line number information from the object file.

122 Chapter 9. Command Reference

A51/ A251 Controls Meaning ‘
NOLIST Excludes the assembler source code from the listing file.
NOMACRO Disables standard macro processing.

NOMOD251 % Disables enhanced 251 instruction set.

NOMODS51 t Disables predefined 8051-specific special function registers.
NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Excludes symbol definitions from the listing file.

OBJECT|(filename)], NOOBJECT Enables or disables object file output. The object file is
- T - saved as filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) fS_Iets maximum number of characters in each line of listing
ile.

PRINT](filename)], NOPRINT Enables or disables listing file output. The listing file is
saved as filename if specified.

REGISTERBANK(num, ...), Indicates that one or more registerbanks are used or

NOREGISTERBANK indicates that no register banks are used.

RESET (symbol, ...) Assigns a value of 0000h to the specified symbols.

SET (symbol, ...) Assigns a value of OFFFFh to the specified symbols.

TITLE(title) Includes title in the listing file header.

XREF Includes a symbol cross reference listing in the listing file.

T These controls are available only in the A51 macro assembler.
T These controls are available only in A251 macro assembler.

C51/C251 Compiler

Invocation: C51 sourcefile [directives]
C251 sourcefile [directives]
C51 @omandfile
C251 @ommandfil e
where

sourcefile is the name of a C source file.

commandfile isthe name of a file which contains a complete command line
for the compiler including a sourcefile and directives. You
may use a command file to make compiling a source file easier
or when you have more directives than fit on the command line.

directives arecontrol parameters which are described in the following
table.

8051/251 Evaluation Kit 123

C51/ C251 Controls Meaning ‘

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

ELOATEUZZY Specifies the number of bits rounded during floating-point
comparisons.

HOLD(d,n,x) * Specifies size limits for variables placed in data (d),
near (n), and xdata (x) memory areas.

INTERVAL t Specifies the interval for interrupt vectors.

INTR2 * Saves upper program counter byte and PSW1 in interrupt
functions.

INTVECTOR(n), NOINTVECTOR Specifies offset for interrupt table, using n, or excludes
interrupt vectors from the object file.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

MAXARGS(n) Specifies the number of bytes reserved for variable length
argument lists.

MOD517 t Enables support for the additional hardware of the
Siemens 80C517 and its derivatives.

MODBIN * Generates 251 binary mode code.

MODDP2 t Enables support for the additional hardware of Dallas
Semiconductor 80C320/520/530 and the AMD 80C521.

MODSRC #* Generates 251 source mode code.

NOAMAKE Excludes AutoMAKE information from the object file.

NOAREGS T Disables absolute register addressing using ARn
instructions.

NOCOND Excludes skipped conditional code from the listing file.

NOEXTEND Disables 8051/251 extensions and processes only ANSI C
constructs.

NOINTPROMOTE t Disables ANSI integer promotion rules.

NOREGPARMS Disables passing parameters in registers.

OBJECT|(filename)], NOOBJECT Enables or disables object file output. The object file is
- T - saved as filename if specified.

OBJECTEXTEND ft Includes additional variable type information in the object
file.

OPTIMIZE Specifies the level of optimization performed by the
compiler.

ORDER Locates variables in memory in the same order in which
they are declared in the source file.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PARMS1 * Uses parameter passing conventions of the C51 compiler.

124 Chapter 9. Command Reference

C51/ C251 Controls Meaning

PREPRINT|(filename)] Produces a preprocessor listing file with all macros

- expanded. The preprocessor listing file is saved as
filename if specified.

PRINT|(filename)], NOPRINT Enables or disables listing file output. The listing file is

_ saved as filename if specified.

REGEILE(filename) Specifies the name of the generated file to contain register
usage information.

REGISTERBANK t Selects the register bank to use functions in the source
file.

ROM({SMALL|COMPACT|LARGE}) Controls generation of AJMP and ACALL instructions.

SMALL Selects the SMALL memory model.

SRC Creates an assembly source file instead of an object file.

SYMBOLS Includes a list of the symbols used in the listing file.

WARNINGLEVEL (n) Controls the types and severity of warnings generated.

t These controls are available only in the C51 compiler.
¥ These controls are available only in C251 compiler.

L51/BL51 Linker/Locator

Invocation: BL51 inputlist [TO outputfile] [directives]

L51 inputlist [TO outputfile] [directives]
BL51 @ommandfile

L51 @ommandfil e
where

i nputli st is a list of the object files and libraries, separated by commas,
that the linker includes in the final 8051 application.

outputfile isthe name of the absolute object module the linker creates.

commandfile isthe name of a file which contains a complete command line
for the linker/locator including an i nput | i st and di recti ves.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives arecontrol parameters which are described in the following
table.

BL51 Controls Meaning

BANKAREA £ Specifies the address range where the code banks are
located.

8051/251 Evaluation Kit 125

BL51 Controls Meaning

BANKx * Specifies the starting address, segments, and object
modules for code banks 0 to 31.

BIT Locates and orders BIT segments.
CODE Locates and orders CODE segments.
COMMON £ Specifies the starting address, segments, and object

modules to place in the common bank. This directive is
essentially the same as the CODE directive.

DATA Locates and orders DATA segments.

IDATA Locates and orders IDATA segments.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NODEBUGLINES Excludes line number information from the object file.

NODEBUGPUBLICS Excludes public symbol information from the object file.

NODEBUGSYMBOLS Excludes local symbol information from the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file.

NOMAP Excludes memory map information from the listing file.

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file.

NOSYMBOLS Excludes local symbol information from the listing file.

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) fS_Iets maximum number of characters in each line of listing
ile.

PDATA Specifies the starting address for PDATA segments.

PRECEDE Locates and orders segments that should precede all others
in the internal data memory.

PRINT Specifies the name of the listing file.

RAMSIZE Specifies the size of the on-chip data memory.

REGEILE(filename) Specifies the name of the generated file to contain register
usage information.

RTX51 Includes support for the RTX-51 full real-time kernel.

RTX51TINY % Includes support for the RTX-51 tiny real-time kernel.

STACK Locates and orders STACK segments.

XDATA Locates and orders XDATA segments.

T These controls are available only in the BL51 code banking linker/locator.

126 Chapter 9. Command Reference

L251 Linker/Locator

Invocation: L251 inputlist [TO outputfile] [directives]
L251 @ommandfil e
where
i nput | i st is a list of the object files and libraries, separated by commas,

that the linker includes in the final 251 application.
outputfile isthe name of the absolute object module the linker creates.

commandfile isthe name of a file which contains a complete command line
for the linker/locator including an i nput | i st and di recti ves.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives arecontrol parameters which are described in the following

table.

L251 Controls Meaning ‘

ASSIGN Defines public symbols on the command line.

CLASSES Specifies a physical address range for segments in a
memory class.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOMMENTS Excludes comment information from the listing file and the
object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file and
object file.

NOMAP Excludes memory map information from the listing file.

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file and
the object file.

NOSYMBOLS Excludes local symbol information from the listing file.

NOTYPES Excludes type information from the listing file and the object
file.

OBJECTCONTROLS Excludes specific debugging information from the object file.
Subcontrols must be specified in parentheses. See
NOCOMMENTS, NOLINES, NOPUBLICS, NOSYMBOLS,
and PURGE.

8051/251 Evaluation Kit 127

L251 Controls Meaning ‘

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PRINT Specifies the name of the listing file.

PRINTCONTROLS Excludes specific debugging information from the listing file.

Subcontrols must be specified in parentheses. See
NOCOMMENTS, NOLINES, NOPUBLICS, NOSYMBOLS,

and PURGE.

PURGE Excludes all debugging information from the listing file and
the object file.

RAMSIZE Specifies the size of the on-chip data memory.

REGEILE(filename) Specifies the name of the generated file to contain register
usage information.

RESERVE Reserves memory ranges and prevents the linker from using
these memory areas.

RTX251 Includes support for the RTX-251 full real-time kernel.

RTX251TINY Includes support for the RTX-251 tiny real-time kernel.

SEGMENTS Defines physical memory addresses and orders for specified
segments.

SEGSIZE Specifies memory space used by a segment.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

OC51 Banked Object File Converter

Invocation: 0C51 banked file
where

banked_file isthe name of a banked object file.

OH51 Object-Hex Converter

Invocation: OH51 absfile [HEXFILE(hexfile)]
where
absfile is the name of an absolute object file.

hexfil e is the name of the Intel HEX file to create.

128 Chapter 9. Command Reference

OH251 Object-Hex Converter

Invocation: OH251 absfil e [HEXFI LE(hexfile)] [{ HEX| H386}]
[RANGE(st art - end) |

where

absfile is the name of an absolute object file.

hexfile is the name of the HEX file to create.

HEX specifies that a standard Intel HEX file is created.

H386 specifies that an Intel HEX-386 file is created.

RANGE specifies the address range of data in the absfi | e to convert and
store in the HEX file. The default range is 0XFF0000 to
OXFFFFFF.

start specifies the starting address of the range. This address must be
entered in C hexadecimal notation, for example: 0xFF0000.

end specifies the ending address of the range. This address must be

entered in C hexadecimal notation, for example: 0x FFFFFF.

LIB51/LIB251 Library Manager

Invocation: LI B51 [command]
LI B251 [command]
where
conmmand is a control command described in the following table. If no

command is given LIB51 enters an interactive command mode.

LIB51/LIB251 Command Meaning ‘

ADD Adds an object module to the library file.

CREATE Creates a new library file.

DELETE Removes an object module from the library file.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Displays module and public symbol information stored in the
library file.

Real-Time Operating System

8051/251 Evaluation Kit 129
Index
BL51 code banking
linker/locatorc.ccoveneiineniennn, 39
— Code Banking........cccocevenerenunnnn. 39
HVision COMMON Ar€aoovvvvreeeerreean. 40
Editor ..o 59 Data Address Management........... 39
Mequ Commands.........c.cceereruennee 59 Executing Functions in Other
OPUONS...coovrrvinnnennns 60 BanKS.........ooovveveieieieieieins 40
OVEIVIBW. oo 56 Listing File Example. 41
Project Manager.............c.c.oooouvees, 60 bold capital text, use ofc.......... iv
_S_tartlng............: 56 DraceS, USE OF vv.veoeeooeeooeooeooeoseeesr, iv
pVision/251 for Windows 54
pVision/51 for Windows..................... 43 C
251 Development Toolsc.ccceeeee. 46
8051 Development Tools 21 C251 Compiler......ccovriiiiiiiiieee, 46
8051 Microcontroller Family.............. 21 Data TYPES «..eevveeeiereerienieeie e 47
8051/251 Compiler Kit Listing File Example..................... 49
SUbSCrIPLioN........cccvvieiiie e 19 Memory Models..........cccceveruennee 48
8051/251 Developer’s Kit Memory Selector.........ccoceeeiennnne 47
SUbSCrIPLioN........ccovevieiie e 18 Program Size.......ccccoceivviinnnnnnn. 48
8051/251 Development Tools 21,45 Reentrant Code..........ccccevevrviennne 49
8051/251 Product Line.........cccccevuennens 11 Register Optimization................... 49
Run-Time Library.........ccccoovvenene 49
A C251 Compiler Kit........ccooeieiennnnne 16
C251 Developer’s Kit.......ccccocevuennee 16
A25L i 17 C51 COMPILEr.vveorreeeereeeeereeeeeeereneen 22
A251 Ass_embler SR 51 Code Optimizations................... 32
Functional Overview..................... 51 Compact Model ... 2
Listing File Example..................... 51 DAt TYPES vvvevrrrereerreeererreesseeseneee 24
A251 Macro Assembler Kit................ 17 DEBUGGING ...vvveeeereeeeeereeeeeseenrenee 34
ASL i 15 Function Return Values................ 30
A51 Ass_emble_r 37 Generic POINtErs......ooo 27
Conflguratlon......_ 37 Interfacing to Assembly 30
angtlongl Overview...........cceenen. 37 Interfacing to PL/M-51................. 31
Listing File Example.................... 37 Interrupt FUNCLIONSccveveee. 29
A51 Macro Assembler Kit.................. 15 Language EXtensions. 23
Additional items, document Large modelc..cccevvveveercrnnnn. 26
CONVENIONS ..oovvvivininiisniiaas iv Library ROULINES.........cccoreerrerrene 35
AlIEN ..o 31 Listing File Example ____________________ 35
ASIM 31 Memory ModelS...ooiii 26
AUTOEXEC.BATcoviiiriieieiee 9 Memory Specific Pointers............ 27
Memory TYPeScccoveveeneriiennns 24
B Parameter Passingc..c..co...... 29
Backing Up Your DiskS..........c.cccvenen. 6 POINMEIS ..vvvvsvvvessvnes v 27

130 Index
Reentrant Functions 28 Code CoVerageccooevvereenuerinannns 70
Register Optimizingc..cc...... 30 Command Window...........c.cccce..... 66
Small modelccooveiiiiiee 26 CPU Simulation.........ccccccovvvvinnne. 63

C51 Compiler Kitcccceoeriniinnicne. 14 Debug Window...........ccccccvvruennee 65
C51 Developer’s Kit.......cccoeeveiienienne. 14 FUNCLIONS ..o 69
C51 Professional Developer’s OVEIVIEW ..o 62
Kit e 13 Performance Analyzer
CA25L...iiiiieiee e 16 WINAOWocveiiiiricece 68
CABLL.. i 14 Serial Window.........c.ccoceeeveiennennn. 67
can_bind_obj ..o 109 StArtingcoceevvevene e 56
can_def 0bjccoovviiiiiiiiiies 109 Watch Window...........ccccceevveinnnne. 67
can_get StatuS.........cccceeeverencrenncns 109 dScope-251 for Windows................... 53
can_hw_init.......cccooevevienieiecienn, 109 dScope-251 Simulator Kit.................. 17
CaN_Fead......coveiii i 109 dScope-51 for Windows..................... 42
CAN_TECEIVE ...eovieeriieieseeie e 109 dScope-51 Simulator Kit.................... 15
CaN_FeQUESE ..o 109
CaN_SENdccovvviiiieriece e 109 E
CAN_SEAM..eoeeeeeee e 109
can_stop ___ 109 ellipses, use ofccccoeviiininiiieen, iv
Can_task_Create.........o...rmevrveerrenn 109 ellipses, vertical, use of iv
can_unbind_objcc.ccevevevirierennn. 109 endasm R 31
can Wait...........___ 109 Environment Settingscccccoeveierinne 8
CAN_WITILE...veeooeeeeeeeeeeeeee e 109 Evaluation Kit ... 2
Changes to the Documentation 3 Evaluz_;ltlon USEIS oo 2
Choices, document conventions........ iv Experienced USErS........ccccooevenerenncnne. 3
COMPACT ...t 25,26
CONFIG.SYS oo, 6 F
courier typeface, use ofccccceeeeie iv Filename, document conventions........ iv
FR251....ciiiiiieceeee e 18
D 2L 15
DEBUGcoviirriieieee e 37,51
DEMO Kit ..ocvoeveeveeeieeeeieeeeiesienesinnen, 2 G
Directory Structureccccoeeeeeveeneene. 7 : .
Disk Cache. . 10 Global Register Optimization............. 33
Displayed text, document
CONVENLIONS ... iv H
DK231 ..o, 16 HEID oo 3
DKS5L .o 14 HOLD oo 48
Document conventions.............cc...u.e... iv
Documentation Changescccc.c.... 3 I
DOS-Based Product Installation.......... 6
DOS-based tool requirements.............. 5 Improving System Performance............ 9
double brackets, use Of............cccc........ iv Installation..........cooovnnnninnn, 5
DS 25 oo 17 Installing the Software...........c.ccooeeeneee 6
DS5L oo 15 INERITUDE. oo, 29
dScope INtroduction...........ccooeeieieeicii e, 1
Breakpointsco.coo.vverrenvennen. 69 IST_recv_messagec........ 106,108

8051/251 Evaluation Kit 131
iSr_send_Mmessagec.cccoverveeenn 106,108 0s_check_mailboxes...........ccccveunees 108
isr_send_signalccccoooerininnnnn 108 0S_check_poolccccveiinenicnnnn. 108
italicized text, use of........c.ccoevviieinnnns iv 0s_check_semaphoreccccceeuenee. 108

0s_check_semaphores..........cccccoue.... 108
K 0s_check tasK........ocoevevviiniinnnnnnn, 108
0S_check tasks........ccccovevveviriiennnnne, 108
Key names, document _ 0s_clear_signal...........cc.ccceevvevevennnns 108
CONVENLIONSocvveierecie e iv 0S_CTEAte_POOIvvoeeeeeereveeeeeerrns 108
0s_create_tasK.........cccoevevvviiiiiiennnnns 108
L 05_delete task........ccoovverreiieeinnnn 108
L2512 linker/locatorccccoeveruennee 52 os_d_etach_i_nterrupt """"""""""""" 108
N e 25,26 05_disable_ISr o.vvveserreeirnen 108
LIB251 library managercc.c...... 53 gz_zﬁblt?ﬁirk """"""""""""""""""""" 182
LIBSL library manager 42 0S_get blocK ..., 108
0S_Send_messageccceeveneene 106,108
M 0s_send_signal.........c.ccocevinieinienn. 108
Manual TOPICScvvverreerriiereniierennes 1 0S_SeNnd_toKen..........cocveueriiciniiinenan, 108
MaP FileS......ovvveeeeeeeeeeeeeeee e, 41 0S_Set SHCe ..oovvviiiiiiecic e, 108
MCB251SB Evaluation Board 99 0S_Walil...coovieiiiiii e, 106,108
MCB517A Evaluation Board 98 OVERLAY ..o, 39
MCS® 251 Microcontroller
Family ..o 45 P
PKSL ..ottt 13
N Printed text, document
NEW USEES ..oeeveeeeeeeeeeeeeeneseneeenns 2 CONVENLIONS ..o, iv
NOMODSL oo 37 ProROM EPROM Emulator 97
NOOVERLAYcoccoeiiiiieceeeeee, 39
NOREGPARMS........cccoevirennne. 29,30 R
RAM DiSK.....cocovveeviiiiieiece e, 9
O README.TXT oo 3
OBJECTEXTEND oo 34 reentrantcoceeeeveeeeeeiiee e 28,29,49
OC51 Banked Object File REGPARMS ... 29
CONVEIET oo 42 Reporting a problemc.ccoceeeeene 3
OH251 Object-Hex Converter............ 53 Requesting Assistance.................oo..... 3
OH51 Object-Hex Converter.............. 42 ROM ..o, 48
0i_reset_int._ Mask......ocoovvevereecnnnn. 108 RTX-251 Full Real-Time Kernel....... 18
0i_set_int_mask.........cccovvvererennnnns 108 RTX-51 i, 101
OME251 oo 46 BITBUS Communication........... 107
OMPS5L oo, 22,31,34 CAN Communication................ 107
Omitted text, document Compiling 106
CONVENLIONSecvveveeeeereeereeeeeeeeeans iv EVENtS...ccoviiiiiiiian, 104,107
Optiona| items, document Functions........ccocevevveveciieecies 108
CONVENEIONS ... iv INEErTUPES ..o 106
0s_attach_interruptco.co.cevevvennn. 108 INtroduction ..o 101
05_check_MailboXcoccovvvvnvenn. 108 LinKingcovviiiiin, 106

132 Index
Message Passingccccceeevernene 106 Temporary Files ..., 9
Preemptionccccccoeveiiinnnne, 105 Types Of USErS......cocviirienieeieieienieins 2
Prioriti€s.....cocviveveiee e 105
Round-Robin Scheduling........... 103 U
Technical Data...........ccevveeveneee. 110
Using Signals _____________________________ 105 US_EI’ .. 2
Using Time—outS...oomvveeeiee 104 USING cconi 29

RTX-51 Full Real-Time Kernel......... 15
Vv
S Variables, document conventions........ iv
sans serif typeface, Use of iv vertical bar, use ofccccooovvvieeiviinee iv
SCA25]1 ..o 19
SDK251 ...oeeeeeeeeeeeseee e 18 wW
SMALL ..o 25,26 What's Included .. 2
SRC......cue.... S T 31 Windows-Based Product
SyStem REUITEMENIS........ccoovvvsssevss. 5 Installation..........ccoceeveeeeiiiciie e 7
Windows-based tool
T FEqQUIrEMENTS ...cveiiieiee e 5

	Preface
	Document Conventions
	Contents
	Chapter 1. Introduction
	Manual Topics
	Evaluation and Demo Kits
	Types of Users
	Changes to the Documentation
	Requesting Assistance

	Chapter 2. Installation
	System Requirements
	Backing Up Your Disks
	Installing the Software
	Installing DOS˚Based Products
	Installing Windows˚Based Products

	Directory Structure
	Environment Settings
	Improving System Performance
	Using a RAM Disk
	Using a Disk Cache

	Chapter 3. 8051/251 Product Line
	8051 Development Tool Kits
	Tool Kit Overview
	Tool Kit Introduction

	251 Development Tool Kits
	Subscription Kits
	Tool Kit Comparison Chart

	Chapter 4. 8051 Development Tools
	8051 Microcontroller Family
	8051 Development Tools

	C51 Optimizing C Cross Compiler
	C51 Language Extensions
	Data Types
	Memory Types
	Memory Models
	Pointers
	Reentrant Functions
	Interrupt Functions
	Parameter Passing
	Function Return Values
	Register Optimizing
	Real-Time Operating System Support
	Interfacing to Assembly
	Interfacing to PL/M˚51
	Code Optimizations
	Debugging
	Library Routines
	Intrinsic Library Routines
	Listing File Example

	A51 Macro Assembler
	Functional Overview
	Configuration
	Listing File Example

	BL51 Code Banking Linker/Locator
	Data Address Management
	Code Banking
	Listing File Example

	OC51 Banked Object File Converter
	OH51 Object˚Hex Converter
	LIB51 Library Manager
	dScope˚51 for Windows
	µVision/51 for Windows

	Chapter 5. 251 Development Tools
	MCS® 251 Microcontroller Family
	251 Development Tools

	C251 Optimizing C Cross Compiler
	Data Types
	Memory Selector
	Memory Models
	Program Size
	Register Optimization
	Reentrant Code
	C Run˚Time Library
	Listing File Example

	A251 Macro Assembler
	Functional Overview
	Listing File Example

	L251 Code Banking Linker/Locator
	OH251 Object˚Hex Converter
	LIB251 Library Manager
	dScope˚251 for Windows
	µVision/251 for Windows

	Chapter 6. Using the 8051/251 tools
	Starting µVision and dScope
	µVision IDE Overview
	About the Environment
	Editor
	Menu Commands
	Development Tool Options
	Project Manager

	dScope Simulator/Debugger Overview
	About the Debugger
	CPU Simulation
	The Debug Window
	Command Window
	Serial Window
	Watch Window
	Performance Analyzer Window
	Other Features

	Sample Programs
	HELLO: Your First 8051/251 C Program
	Hardware Requirements
	HELLO Project File
	Editing HELLO.C
	Compiling and Linking HELLO
	Testing HELLO With dScope

	MEASURE: A Remote Measurement System
	Hardware Requirements
	MEASURE Project File
	Compiling and Linking MEASURE
	Testing MEASURE With dScope

	BADCODE: An Example with Syntax Errors

	Chapter 7. Hardware Products
	ProROM EPROM Emulator
	MCB517A Evaluation Board
	MCB251SB Evaluation Board

	Chapter 8. Real Time Kernels
	RTX˚51 Real˚Time Operating System
	Introduction
	Single Task Program
	Round˚Robin Program
	Round˚Robin Scheduling With RTX˚51
	RTX˚51 Events
	Compiling and Linking with RTX˚51

	Chapter 9. Command Reference
	A51/A251 Macro Assemblers

	Index

