
1

CSE 490RA

Richard Anderson
Chris Mason

Course goals

! For students
" Programming experience on Tablet PC
" UI and Design experience

" Work in team

" Develop an application for an external 
customer

Course goals

! For Richard Anderson
" Build undergraduate expertise in Tablet 

PC development
" Prototype of TPC capstone

" Ugrad curriculum shift

Course goals

! For Chris Mason [I’m making these up]
" Explore approaches to diagnostic tools
" Build ties with UW CSE

" Get to know UW Programs and what 
students can accomplish

" Artifacts to show to Schindler
! Justify time spent with UW
! Suggest R&D Directions for Schindler

Team organization

! Classic software teams
" Program manager
" Developers (Dev lead + devs)

" Test

" Documentation/UI

! Other models
" Fad of the day

Waterfall model (McConnell)

System specification

Requirements Analysis

Architectural Design

Detailed Design

Coding and Debugging

Unit testing

System testing

Maintenance



2

Requirements

! "Gather and document the functions 
that the application should perform for 
the users in the users' language and 
from the users' perspective"

! Requirements should neither constrain 
nor define methods of implementation

Challenges of requirements 
gathering (Kulak, Guiney)

! Finding out what users need
! Documenting users' needs

! Avoiding premature design 
assumptions

! Resolving conflicting requirements
! Eliminating redundant requirements

! Reducing overwhelming volume
! Traceability

Use case

! Overview of interactions
! Text details

! Example
" Authenticate User

! Actors: User, Unauthorized user
! Summary: Users request entry to the system, 

valid credentials allow access

User requirements

! Requirements from the user's point of 
view

! Expressed in the user's language

! Based on understanding of user's 
application

! Does not define implementation
! How do we get them???

Requirements gathering

! Understand application from users 
perspective
" An application which doesn't match needs 

won't be purchased, or won't be used

! Building for a specific customer
! Building a widely used application, 

getting requirements from 
representative users

Understanding use case

! Not asking users to define the 
application

! Observations, Interviews, Examination 
of artifacts, Focus Groups

! Ethnography
" Branch of anthropology dealing with the 

scientific description of individual cultures



3

Field observations

! Protocols developed in many academic 
fields

! Event based

! Narrative

What do you do with the data?

! Define user experience of application
! Application must support the process

! Efficient handling of common cases
! Ability to handle exceptional cases 

(which aren't all that exceptional!)
! Develop feature lists

User requirements

Business 
Requirements

User 
Study Use Cases

User 
Requirements

Functional 
Requirements

Software project failures

! Software projects have a reputation for 
failure
" Probably well deserved

" Many examples of massive cost over runs, 
release delays and cancellations

Project Failure

! Not delivering working program on 
targeted date
" Overrun on time/budget

" Under delivery of functionality or quality

All to common case

! Project starts out fine, with a few minor 
changes in requirements, delays of 
supporting activities and changes in 
personnel

! Coding proceeds at a good rate with 
most modules almost working at the 
point when the system is to integrated



4

Then everything goes wrong

! Integration reveals incompatibility between 
components

! Integration reveals severe bugs in 
components

! Unexpected hardware or software change

! And a few random disasters
" Source code lost, key people directed to other 

tasks, sudden changes in requirements or 
schedule

What happens next

! Devs code like hell
" Fixing and patching bugs
" Significant changes in architecture or functionality 

on-the fly

! Test and documentation held up
" “The build is broken – I can’t do anything”

! Long hours
" Negative team dynamics
" Damage control activities

Day of reckoning

! Substandard product shipped
" “It’s just version 1.0 – we can issue an 

upgrade”

! Schedule shifts

! Project cancelled or downgraded

Classic Mistakes

! McConnell, Rapid Development
" People related mistakes
" Process related mistakes

" Product related mistakes

" Technology related mistakes

People issues (high level)

! Personnel management
" Functioning team

! Relationship with customer
! Management issues

" Management support and competence

People related mistakes

! Motivation
! Weak personnel
! Problem employees
! Heroics
! Adding people to a 

late project
! Crowded offices
! Friction between 

dev and customers

! Unrealistic 
expectations 

! Lack of sponsorship
! Lack of stakeholder 

buy-in
! Lack of user input
! Politics over 

substance
! Wishful thinking



5

Process issues (high level)

! Accurate planning
" Realistic scheduling
" Contingency planning

! Paying attention to all stages of product 
development

Process related mistakes

! Optimistic schedules
! Insufficient risk 

management
! Contractor failure
! Insufficient planning
! Abandonment of 

planning under 
pressure

! Wasted time in “fuzzy 
front end”

! Shortchanged 
upstream activities

! Inadequate design
! Shortchanged QA
! Insufficient 

management controls
! Premature 

convergence
! Omitting necessary 

tasks from estimates
! Planning to catch up 

later
! Code-like-hell 

programming

Product related mistakes

! Requirements gold-plating
! Feature creep

! Developer gold-plating
! Push-me, pull-me negotiation

" Adding new tasks when schedule slips

! Research-oriented development

Technology related mistakes

! Silver-bullet syndrome
! Overestimating savings from new tools 

or methods

! Switching tools in the middle of a 
project

! Lack of automated source-code control


