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1 Introduction

This project was an undertaking in real-world software design in the context of the
open-source UrbanSim transportation and land use modeling system.

The quarter long Capstone class combined students from the Computer Science and
Engineering department with a Ph.D. Candidate in Public Policy and Management
from Daniel J. Evans School of Public Affairs to form an multi-disciplinary team.
During the course of our multidisciplinary team collaboration we used our team’s
skills and knowledge in the fields of computer science, economics and public policy
to make a real contribution to the UrbanSim project and to use our knowledge within
the context of another discipline.

The content of this report will discuss our project’s design, individual components,
testing, accomplishments and ethical considerations.

2 Project Goals

1. To assess the incorporation of the indicators of welfare and equity within the
OPUS system.

2. To build a framework that allows flexible equity and welfare analysis.

3. To examine the Reldist module written by Mark Handcock[3] and determine
the best way to integrate this code with OPUS.

3 Project Design

The functional components of our project are written in Python and are designed to
match existing code in UrbanSim. Each component was delivered with documenta-
tion, created using LATEX1. The documentation covers the components features, use,
derivation and known limitations.

The Lorenz curve, Residential Indices, and Reldist plot were initially written as
stand-alone Python files. These stand alone files were tested with known data using
Python unit tests to ensure their accuracy. Once it was determined that the code

1http://www.latex-project.org/
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was correct, we integrated the code into the OPUS Core.

The integration of our stand-alone code required us to become familiar with how
indicators and variables are constructed in OPUS and what their dependencies and
inherited methods are. Once we determined the correct way to integrate our code,
we used the Wing IDE2 in the debug mode to determine how similarly structured
code already in the OPUS Core behaved. We used this as a guide for integrating our
own code. After the integration was complete we tested the functionality by viewing
the results in various forms: Lorenz Curve, Matplotlib map, etc.

UrbanSim advocates a style of programming in which the test cases are written
before any code. While we did not strictly adhere to this method, all tests were
complete before the integration into OPUS. Our testing procedure is explained in
greater detail in section 4.

The following sections describe in detail the accomplishments of our project.

3.1 Lorenz Curve and Gini Coefficient

3.1.1 The Lorenz Curve

The Lorenz curve is a graph which represents the distribution of some variable over a
population[1]. It is the graphical representation of the cumulative distribution func-
tion of a probability function. One of its most common uses is to measure inequality,
whether it be income, transportation or location inequality. The distribution of any
variable can be measured, but the result is not always useful.

Typically, the population is plotted on the x axis and the variable is plotted on the
y axis. The Lorenz curve can then be read “the bottom x% of the population has
y% of the total amount of the variable.” One special instance of the Lorenz curve
is the line of perfect equality, which is defined by the function y = x. The line of
perfect inequality, in contrast, would show a perfectly unequal distribution in which
one person has all the income. The curve would be at y = 0 for all x < 100% and at
y = 100% for x = 100%.

2http://www.wingware.com/wingide
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3.1.2 The Gini Coefficient

Another measure can be derived from the Lorenz curve, called the Gini coefficient.
The Gini coefficient is the ratio of the area between the line of perfect equality and
the Lorenz curve to the total area underneath the line of perfect equality[1]. Thus,
the Gini coefficient is a scalar which also measures inequality.
Some important aspects of the Gini coefficient are:

1. It can be used to measure the inequality of any variable, but the result is not
always useful.

2. It is not affected by the shape of the Lorenz curve, only by the ratio of the
areas used to compute it.

3. It does not indicate how the inequality is distributed, only the total amount of
inequality.

3.1.3 Formulas

The Lorenz curve can often be represented by a function L(F), where F is the hori-
zontal axis, and L is the vertical axis.
For a population of size n, with a sequence of values yi, i = 1 to n, that are indexed
in non-decreasing order (yi <= yi+1), the Lorenz curve is the continuous piecewise
linear function connecting the points (Fi, Li), i = 0 to n, where F0 = 0, L0 = 0, and
for i = 1 to n:

Fi = i/n
Si = Σi

j=1 yj

Li = Si/Sn

The Gini coefficient is defined as a ratio of the areas on the Lorenz curve diagram. If
the area between the line of perfect equality and Lorenz curve is A, and the area un-
der the Lorenz curve is B, then the Gini coefficient is A/(A+B). Since A+B = 0.5,
the Gini coefficient, G = A/(.5) = 2A = 1 − 2B. If the Lorenz curve is represented
by the function Y = L(X), the value of B can be found with integration and:

G = 1 − 2
∫ 1
0 L(X)dX

4



3.1.4 Integration into UrbanSim

The Lorenz curve was added to the OPUS core as an image type for indicators.
This is the best location for the Lorenz curve because of its flexibility. First, it is
a graphical measure, and second, it can measure the distribution of any variable,
regardless of which package or dataset the variable is taken from. It is up to the user
to interpret the results. Because the Gini coefficient is calculated directly from the
points on the Lorenz curve, it is included as part of the graphical output. Figure 1
illustrates the output of the Lorenz curve image type.
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Figure 1: A sample Lorenz curve and Gini coefficient for average income in the Eu-
gene dataset.

In figure 1, the population of the example is plotted on the x axis from 0% to 100%,
and the variable, average income, is plotted on the y axis, also from 0% to 100%. The
line of perfect equality, because of its significance as a baseline function, is always
displayed as a dashed line. The red line is not a line, but actually a set of thousands
of discrete points because the amount of data is finite. These discrete points are
integrated numerically to find the Gini coefficient, which is displayed in the top left
corner.

3.1.5 Limitations

There are some of the limitations to be aware of when using these indicators:

5



1. The Lorenz curve may understate the actual amount of inequality if richer
households are able to use income more efficiently than lower income house-
holds. From another point of view, measured inequality may be the result of
more or less efficient use of household incomes.

2. The Gini coefficient is influenced by the granularity of the measurements. For
example, five 20% quantiles (low granularity) will yield a lower Gini coefficient
than twenty 5% quantiles (high granularity) taken from the same distribution3.

3.2 Residential Composition Indices

The Indices of Residential Composition are an additional measure of examining the
impact of policy decisions in UrbanSim. Examining the changes in how a population
is distributed in a geographic area over time can provide important information, and
also facilitate the detection of anomalies in data.

These indices are based on the work of sociologists Douglas Massey and Nancy
Denton,[8] who have identified five dimensions on which to consider the geographic
distribution of populations: evenness, exposure, concentration, centralization and
clustering. Each of these dimensions has been measured in a number of ways, but can
be described adequately with only one indicator, according to Massey and Denton[8].

One common use of the indices of residential composition is to show the distribution
of racial and ethnic groups in an area. Massey and Denton[8] often refer to these as
“Segregation Indices” because of this common use. We elected to use a different label
for these terms due to the many types of groups that can be looked at with these
indicators and the connotation of segregation pertaining to race alone. Examples of
these other applications include considering the distribution of groups categorized
by income, age, family size or type, marital status, employment status, educational
attainment, or gender. The indices can also be used to examine the distribution
of different types of businesses, jobs, or industries such as retail, professional, or
manufacturing.

3.2.1 The Dissimilarity Index

The dimension of evenness considers whether members of a certain population group
are spread equally across the units of a geographical area. If some units contain a

3http://en.wikipedia.org/wiki/Gini coefficient
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larger share of the group than others, the distribution is thought to be uneven. The
index of dissimilarity measures the extent of this unevenness. The index takes values
from 0 to 1, with 0 representing complete evenness and 1 representing complete un-
evenness. It can also be thought of as the fraction of the group members who would
need to move in order for the proportions to be equal across geographic units.

The index of dissimilarity is a weighted average of the deviation of the group propor-
tion in each unit from the group proportion across the area. It can be represented
by the function:

D =
n∑

i=1

[ti|pi − P |/2TP (1 − P )

where i is the identifier for each geographic unit from 1 to n within the area. The
proportion of the group being considered in the geographic unit i (relative to the
total in that unit) is denoted pi, while P is the average proportion of the group in
the entire area. The total population in each unit is ti, and in the entire area is T .

3.2.2 The Interaction Index

The exposure dimension focuses on the likely experiences of a certain population
group when living amongst another group. If the number of people in the selected
group is relatively small, its members will be more likely to encounter members of
other groups through the process of residing in the same neighborhood.

The interaction index for groups X and Y measures the extent to which members of
group X are exposed to members of group Y. Typically, the population of group X
is smaller than for group Y. The following formula indicates the procedure through
which the interaction index is computed. Within each geographic unit i, let xi, yi,
and ti denote the number of X, Y and total members in that unit, respectively. The
fraction of group X members in each unit is multiplied by the share of group Y rel-
ative to the total in that unit. The product of these fractions is then added over all
geographic units to provide an overall indicator of the probability that any member
of group X lives in the same unit as a member of group Y. The index ranges from 0
to 1, with 0 indicating minimal exposure and 1 indicating complete exposure.

xP
∗
y =

n∑
i=1

[xi/X][yi/ti]
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3.2.3 The Relative Concentration Index

Concentration as a dimension of residential composition describes of the use of phys-
ical space in a geographic area. Concentration is high if members of group X occupy
only a few areas which are small in size. This relative confinement could, for exam-
ple, be the result of official or unofficial practices such as zoning or discrimination,
or perhaps exist for reasons of convenience and mutual support.

The relative concentration index can take values in the range of -1 to 1. It is com-
puted with the following formula.

RCO =

{[
n∑

i=1

(xiai/X)]/[
n∑

i=1

(yiai/Y )] − 1}

{[
n1∑
i=1

(tiai/T1)]/[
n∑

i=n2

(tiai/T2)] − 1}

In the same way as for the other measures, xi, yi, and ti denote the number of X,
Y and total members in geographic unit i, respectively. Also, this measure requires
that geographic units be ordered from smallest to largest size in area. The area in
each unit is denoted ai. The number n1 is the rank in the ordering of the unit for
which the cumulative total population of all the smaller units is equal to the total
number of group X members in the entire geographic area.

The number n2 is the rank of the unit for which the cumulative total population
of all the smaller units is equal to the number of group X members in all of the
units larger than n2, including unit n2 itself. The total population in units 1 to n1

is denoted T1, and the total population in units n2 to n is denoted T2.

The RCO compares the ratio of X and Y group concentrations to the ratio that
would result if X were maximally concentrated and Y minimally so. A value of -1
means that group Y’s concentration is as high as possible compared to group X,
while a value of 1 means X’s concentration is as high as possible relative to Y’s
concentration. A score of 0 suggests that the two groups are equally concentrated.

3.2.4 The Absolute Centralization Index

The centralization dimension measures the extent to which a group lives close to
or far from the central place of a geographic area. The central place might be the
downtown area or central business district (CBD), for example.
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The absolute centralization index is computed as follows. The units are ordered by
area. Ai denotes the cumulative proportion of the entire land area that is located in
unit i and all the units smaller than i. The cumulative fraction of group X members
in those units is denoted Xi. The next smallest unit’s area and fraction are denoted
Ai−1 and Xi−1, respectively. The summed products are then compared according to
the formula:

ACE = (
n∑

i=1

Xi−1Ai) − (
n∑

i=1

XiAi−1)

In practice, the first term above is implemented in UrbanSim as the sum of the first
n−1 population fractions multiplied by the cumulative area of the next largest units,
leaving out the cumulative population fraction of the last and largest unit. If n=4, it
would be X1A2 +X2A3 +X3A4. The second term is the opposite: the first n−1 area
units are multiplied by the next larger population unit, such as X2A1+X3A2+X4A3.

The range is from -1 to 1. An ACE value of 0 suggests that the members of group X
are spread evenly across the area, while a positive score would indicate that members
live close to the central place and a negative score indicates living further from the
central place. One interpretation of the ACE is the fraction of group members that
would be required to move in order to achieve a uniform geographic distribution.

3.2.5 The Spatial Proximity Index

The clustering dimension measures whether the units containing large fractions of
group X are themselves located close together within the area. If so, the population
is thought to be highly clustered.

Massey and Denton cite White’s index of spatial proximity as a good measure for
clustering. It requires some kind of data on the distances between each geographic
unit in the area. The distance between units i and j is denoted dij. This distance is
then transformed by the exponential function to create cij = exp(dij). An interme-
diary calculation is required for each group. For group X, it is as follows:

Pxx =
n∑

i=1

n∑
j=1

xixjcij/X
2

Analogously, one computes Pyy and Ptt for group Y and the total population T of
the area. The index of spatial proximity is a weighted average of the proximities for
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groups X and Y, calculated as follows. The total population is computed as the sum
of the two group populations so that groups can still be compared even if they do
not sum to the actual total in the population.

SP = (XPxx + Y Pyy)/TPtt

The index takes the value 1 if the groups are not differentially clustered, and is
greater than 1 if the units with larger numbers of group X or Y members are closer
to each other than to those units with larger numbers of the other group. It is only
less than 1 in the event that members of opposite groups are located closer to each
other than to members of their own group.

3.3 Welfare Index

3.3.1 Concept

This welfare indicator is based on the idea of compensating variation (CV). The
purpose of compensating variation is to measure the amount of money with which an
individual would need to be compensated in order to return to the same satisfaction
level that he or she had before a policy was enacted. This amount can be positive if
the policy is harmful, or negative if the change is beneficial. As an aggregate social
measure, CV is added up for all individuals in order to compare alternative policies.
The policy with the lowest total compensating variation can be thought of as the
least harmful or most beneficial, relative to the original utility levels of members of
society.

3.3.2 Inputs

During the estimation process, UrbanSim calculates the utility that each household
would enjoy under various alternative policy scenarios. These calculations fall within
the general notion of discrete choice modeling and the specific method of random
utility maximization (RUM). Random utility maximization assumes that the util-
ity, vi,k, for each household, i, and under each alternative, k, is a linear function of
the characteristics of the household and the characteristics of the policy alternative,
where such characteristics are denoted by x in the example equation that follows.

vi,k = βaxi,a + βbxi,b + βc,kxc,k
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The β coefficients are estimated by maximum likelihood, a method that finds the
values which are most likely to be correct given the observed data. The utility vi,k

is sometimes called a representative utility because each households true utility level
Ui,k is not fully captured by the above specification. An error term εi,k measures
the discrepancy. This disturbance is assumed to be distributed in a certain manner,
usually according the Gumbel (a.k.a. type I extreme value) distribution. Gumbel is
a subset of generalized extreme value (GEV).

Ui,k = vi,k + εi,k

One of the primary inputs into the welfare calculation is the representative utility
for each household and alternative, vi,k. Another important input is the marginal
utility of money. This is the β coefficient on the income term in the utility function.
As explained in the section on assumptions, the term must be linear in income in
order for the results to be valid. A ratio would not be sufficient.

3.3.3 Formula

Formula to be Calculated: Following Joel Franklin’s dissertation[2] as well as Small
& Rosen[10], each households expected compensating variation when moving from
policy 0 to policy 1 is:

E(CV 0,1) = 1
λ
[log

∑
k∈A

ev1
i,k − log

∑
k∈A

ev0
i,k ]

Only one pair of scenarios can be considered at a time. The utility amounts are
converted into dollar amounts through multiplication by the inverse of λ, which is
the marginal utility of money. In Joel’s framework, households have a choice of
travel modes (alternatives k within the set A) under each policy scenario, which is
the reason for the summation across mode alternatives. In a more general analysis,
there may be other dimensions of choice on the part of households, and thus more
summations. We should define the policy scenarios and household- or business-level
alternatives carefully to determine which ones we want to compare. An example of a
policy scenario would be the construction of a new freeway. That doesn’t necessarily
change the β coefficients, but it might change the characteristics of the policy alter-
natives in the utility formula above, and lead one choice to become more attractive
than another.
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3.3.4 Assumptions

The previously described method can only be applied to discrete choice models that
are specified in a certain way. He suggests we first create a utility that checks that
the model specification conforms to these restrictions and sends a warning to the
user when one of the restrictions is violated. The restrictions are[5]:
A.1 Additive disturbances; i.e., Uj = V (y − pj, qj) + εj,
A.2 GEV (generalized extreme value) disturbances, and
A.3 Constant Marginal Utility of Income; i.e., V (y − pj, qj) = a(y − pj) + f(qj).

3.3.5 General Procedure

Because the Welfare Indices were not implemented, we felt that it was important to
outline our work in the hopes that this would project would be completed at some
time.

General Steps:

1. If assumptions are not satisfied, generate a warning message and stop. Other-
wise, continue.

2. Obtain representative utility and marginal utility of money amounts for each
household under each scenario and alternative. Save these to the record for
each household. This requires running UrbanSim for two different scenarios
and then being able to retrieve data from both of them. The same number
of alternatives should be considered for each scenario in order to make fair
comparisons.

3. Sum across alternatives and take logs according to the formula for expected
compensating variation.

4. Once CVs have been calculated for each household, sum across all households.
Provide this information to the user and specify which scenarios were compared

3.3.6 Challenges and Limitations

Implementation of the preceding steps necessitates the development of new features
within UrbanSim, particularly for purposes of comparing the results of two separate
computations under different scenarios. Also, Paul Waddell and Joel Franklin have
described the importance of comparing results of similar procedures for each scenario.
Since the choice alternatives are sampled rather than fully enumerated, it is likely
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that the choices available to any given household in each model run will differ. The
variation in particular choices used for estimation arguably is not a problem by itself,
according to Paul as well as David Layton. However, the number of alternatives
sampled certainly needs to be the same across the scenarios. The reason for this
is that the measure is based on the sum across alternatives, and so is sensitive to
the number of alternatives considered. Finally, a variable for income needs to be
included in any choice model, in order to obtain the marginal utility of money. The
variable can be income minus housing or other costs, but should not be a fraction
such as housing cost divided by income. The marginal utility of money should be
the same across the two model runs.

3.4 The Reldist package

The Reldist package4 is an extension for the open source statistics software R5. It
provides functions for the comparison of distributions and was written by Mark S.
Handcock of the University of Washington. Detailed information about the functions
implemented in the Reldist package can be found in his book[3].

We integrated the Reldist package using a R wrapper for Python called RPy6 . Ur-
banSim is currently in the process of converting from numarray (a re-implementation
of an older Python array module called Numeric) to Numpy. This conversion required
us to use the current version from the subversion repository, since the latest released
version doesn’t have complete support for Numpy7, the numeric package that is used
in UrbanSim. The current implementation uses the function called ”reldist”. It can
be used to compare two distributions. For example: in the context of UrbanSim this
could be the distributions of the average income on a zone level for the years 1980
and 1982.

3.4.1 Integration into UrbanSim

The integration of the Reldist package into UrbanSim is very similar to the inte-
gration of the Lorenz curve plot. It can be used like any other plot type. If it is
given one year as input, the given year’s distribution is compared to the perfectly
equal distribution. It must be noted that this is not a significant comparison for

4http://cran.r-project.org/src/contrib/Descriptions/reldist.html
5http://www.r-project.org
6http://rpy.sourceforge.net
7http://numpy.scipy.org
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Figure 1: The distributions of permanent wage growth in the original and recent NLS cohorts.
(a) PDF overlays for each cohort; (b) Lorenz curves for the PDFs.
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Figure 2: The relative distribution of permanent wage growth in the original and recent NLS
cohorts: (a) the relative CDF; (b) the relative PDF. A decile bar chart is superimposed on
the density estimate. The upper and right axes are labeled in permanent differences in log
wages. The smoothing parameter is 0.4.

14

Figure 1: The two distributions (left) and the corresponding Reldist plot (right)

all indicators in UrbanSim. If it is given two years, the distributions of the given
variable in the two years is compared. For an example of this see the next section.

3.4.2 Interpreting the plot

Interpreting the produced plot is not straightforward. The example in Figure 1 was
taken from a paper by Mark S. Handcock[4]. One can see that in areas where the
recent cohort curve in the distribution is above the original cohort curve, the curve
in the Reldist plot is above the 1.0 line. In areas where it is the other way around,
the curve in the Reldist plot is below the 1.0 line. The significance of the plot is to
demonstrate how the distribution has shifted. In this case the plot would show that
there are more people with lower wages, fewer people with medium wages and about
the same amount of people with high wages.

However if we produce a plot from the UrbanSim data (Eugene dataset) the plot
looks a bit different. See Figure 2.
The two plots show the relative distribution of the average income in the years 1981
and 1982. The only difference is the smoothing parameter to the Reldist function.
On the left plot it was set to 0.35, on the right plot it was left out which causes the
Reldist function to use the value that minimizes the GCV. The plot with smoothing
factor set to 0.35 (left) is much closer to the actual data than the one on the right.
With a little bit of imagination one can see how you can get the right plot from
the left one by doing a lot of smoothing. It has yet to be determined why the data

14
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Figure 2: Reldist plots of UrbanSim data. Average income on zone level in the
Eugene dataset

from UrbanSim seems so noisy. An explanation might be that there are hardly any
changes, and the Reldist package is simply exaggerating very small changes. In any
case the Reldist plot seems to be a good way to detect anomalies in the data.

3.4.3 Limitations

There are currently two limitations in the Reldist integration:

1. It is not possible to compare distributions that come from different scenarios.
Only different years of the same scenario can be compared.

2. It is not possible to create plots on the gridcell level, because R crashes if you
attempt to do this. The reasons for this are probably lie inside the Reldist
package, e.g. it can’t handle datasets that big.

4 Project Testing

As described in the ’Project Design’ section, we used Python unit tests for testing
our code. Each Python file was written as stand-alone code containing specific unit
tests that provide known input to use in the computation, and compare the output
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of the computation with the known correct value.

After determining that the code functioned as expected we integrated it into OPUS
and used the data provided from the Eugene cache as input to our methods. In
order to test this code we stepped through the execution with the Wing IDE and
examined the behavior at various breakpoints. The visual output was also checked
for correctness by examining the values returned and ensuring that the visual output
was consistent with these values.

As a final step in ensuring the correctness of our code, the Lorenz curve was subjected
to a code review.

5 Issues of Professional and Ethical Responsibility

Our project’s goal was to make a meaningful contribution to the UrbanSim code
base. In that way we needed to be aware of the issues of professional and ethical
responsibilities that accompany this project. UrbanSim is a tool currently being used
in making policy decisions. It is possible that our contribution to UrbanSim could be
used in shaping a policy and as such we have a responsibility to ensure that our code
is correct, freely available for inspection, and that our resources and assumptions are
well documented.

The documentation provided with each of our indicators specifies the mathematical
formulas used in the computation and the resources we used to justify these formu-
las. While this mathematical documentation is essential to legitimize our algorithm,
it is also our professional and ethical responsibility to document other less technical
details. For this reason, in our documentation we explicitly state known limitations
and what our assumptions about the kind of input that will be used are.

Modeled after other aspects of UrbanSim, the data to be evaluated is chosen exclu-
sively by the user. The output of the indicators are displayed visually with the scale
and units clearly marked. The significance of this is that we are not interpreting the
results for the user, but merely displaying them.
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6 Project Impacts

The impact of UrbanSim in general is that it provides a transparent way to view the
effects of policy change. The flexibility built into UrbanSim provides stakeholders to
look at those effects based on a set of values that they can choose. For example it
may be very important in a community to ensure that bicycle routes are not neg-
atively impacted, or that open space remain at a specific percent of the total area.
The user can then generate indicators that track what impact a policy would have
on the percentage of open space, or the net loss/gain in bicycle routes.

Our project’s contribution to UrbanSim provides the user with another way to vi-
sualize the indicators that are outputs of the model. For example the Lorenz curve
can be modeled to look at how the distribution of wealth shifts from year to year un-
der different scenarios. This can help analyze trends and compare different scenarios.

The idea of debating the implementation of various policies is a contemporary issue.
Currently in Seattle, there is a debate regarding the Alaskan Way Viaduct. Various
plans have been proposed including: rebuilding the viaduct, creating a tunnel or
removing it completely. It is essential, for meaningful debate, to be able to predict
the long-term consequences of each of these actions. In this way tools like UrbanSim
can help to generate indicators based on the different scenarios. These indicators can
then be compared. This assists policy makers and citizens in supporting the plan
that best fits with their values.

By adding to the tools that allow a community to compare scenarios in ways that
reflect their values we have made an impact in these decision making processes.
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