
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Software Security (cont.):
Defenses, Adv. Attacks, & More

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Monday, October 10, 11

Updates Oct. 7th

• Coffee/tea signup sheet posted (optional)

• M 584 reading for Oct. 14th posted

• Security reviews & Current events

• Lab 1

Monday, October 10, 11

Today

• Randomness

• Software defenses

• Advanced attacks

• Advanced defense

Monday, October 10, 11

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 10, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 10, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 10, 11

How would you test a RNG?

Monday, October 10, 11

How would you test a RNG?

• Statistical tests: how are the output
values distributed?

• Spectral tests: plot data in n-D, find
patterns

• Related to compressibility/summarizibility
A: 010101010101010101010101010101
B: 110010000110000111011110111010

Monday, October 10, 11

RANDU - famously bad PRNG

• X[i+1] = 65539 * X[i] (mod 232)

• All X[i] are odd!

3-D plot of
RANDU output
(Wikipedia, RANDU article)

Monday, October 10, 11

RANDU - famously bad PRNG

(Wikipedia, RANDU article)

Monday, October 10, 11

Where do (good) random
numbers come from?

Monday, October 10, 11

Where do (good) random
numbers come from?

• Humans: keyboard, mouse input

• Timing: interrupt firing, arrival of packets
on the network interface

• Physical processes: unpredictable physical
phenomena

Monday, October 10, 11

SGI’s LavaRand

(http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/)

Monday, October 10, 11

http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/
http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/

Open Source LavaRnd

• Camera CCD looking into
an empty, dark, shielded can

• Measuring background
radiation
“thermal noise”

• Quantum process:
randomness from
Heisenberg’s Uncertain
Principle

(http://www.lavarnd.org/what/process.html)

Monday, October 10, 11

http://www.lavarnd.org/what/process.html
http://www.lavarnd.org/what/process.html

Physical RNGs in CPUs
• State of uninitialized memory

when machine powers on

• Tiny variations in voltage over resistor

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008 8

PHK (M) =
16∑

i=1

(m2i−1 + k2i−1) (m2i + k2i) (14)

M = (m1, ...,m32) K = (k1, ..., k32) (15)

mi, ki ∈ GF (2) (16)

3) Statistical Testing of Extracted Random Bits: While min-
entropy is intended as the primary assurance of randomness
for the generated bits, these bits are also tested using the
runs, approximate entropy, and block frequency tests from the
NIST suite [37]. Over 52 million bits of power-up state are
hashed into 12,800 128-bit random numbers for testing. As a
compromise between testing large blocks of random bits and
testing many blocks of random bits, the tests are performed
on 1,280 blocks of 1,280 bits each, with each block being
a concatenation of ten 128-bit random numbers. The random
numbers pass each of the tests (Table. III), further supporting
the feasibility of extracting statistically random numbers from
the power-up state of ordinary commercial SRAM chips using
a simple low-cost entropy extracting code.

B. Comparison to Existing Work
With regards to the mechanism for generating entropy,

the FERNS method is compared to, and contrasted against,
the recent ISSCC 2007 TRNG design of Tokunaga, Blaauw
and Mudge [30]. Both designs create random numbers us-
ing metastable cross-coupled CMOS devices. In Tokunaga’s
design, a single cross-coupled cell is biased precisely to the
metastable point and then allowed to stabilize, with the stable
state then determined by noise. Because the the metastable bias
point is not static, dynamic control and feedback are used to
set the cell to the metastable point. A delay test is used to
judge the metastability; the probability that the bias point is
truly metastable increases with the time required to resolve
the metastability. A notable benefit of this approach is that the
bits produced are assured to be a result of thermal noise, but
a drawback is that having a high precision timer and control
system consumes power and area.

The FERNS method of extracting randomness from SRAM
is akin to using a very imprecise version of Tokunaga’s
design. In FERNS, massive redundancy compensates for the
imprecision, with the randomness scattered throughout the
SRAM (Fig. 9). No feedback or control is required, because
there is no need to precisely bias a single cross-coupled cell
to perfect metastability. Instead, FERNS relies on the large
number of cells to ensure that some cells will be influenced
by noise when the chip is powered-up, without giving concern
to which cells are generating randomness. In fact, when the
chip is powered-up in different conditions, different cells
become random (See Section VI-B), demonstrating a potential
resiliency against external influences.

1) Estimated Area Costs: The tradeoff of precision against
redundancy has implications on the area cost. In Tokunaga’s
circuit, the majority of silicon area is consumed by the control
logic. The metastable module itself is approximately the size
of 600 SRAM cells. Because FERNS is using 512 bytes of

Fig. 9: SRAM cells with unpredictable power-up states, shaded
dark, are scattered throughout a 512-byte section – the quantity
used to create a single 128-bit random number. The entropy
of each cell is determined from 100 power-ups at 293 K. Note
that the measure entropy differs from the measure min-entropy,
as min-entropy is meaningless for single bits.

TABLE IV: Comparing the estimated area of FERNS with that
of related work, based on 0.13µm technology

Tokunaga et al. [30] FERNS
Function Area(µm2) Function Area(µm2)

Metastable Module 6,000 SRAM Array 12,300
Control 29,900 PH Hashing 7,400
Total 35,900 Total 19,700

SRAM, FERNS requires more area for its metastable circuitry.
However, the PH universal hashing function, requiring only
557 cells, is roughly a quarter of the size of the counter and
charge injection circuitry required for the Tokunaga’s circuit.
Note that our estimates for area comparison are indirectly
supported by the related work itself, as the ISSCC2007 die
micrograph shows an 8 kbyte SRAM array side-by-side with
the TRNG circuit. [30].

2) Fixed vs. Unlimited Entropy Generation: The primary
limitation of the FERNS TRNG is that entropy is only
generated during power-up. This contrasts poorly against the
unbounded entropy generation potential any dedicated TRNG
circuit. If random numbers will be needed during a time other
than power-up, the random numbers must be extracted and
stored from power-up until use. For this reason, the FERNS
method is best suited to applications that are intermittently-
powered and do not require large quantities of random num-
bers.

3) Custom vs. General Purpose Circuitry: The preceding
paragraphs have shown that FERNS can generate random
numbers in comparable area to a dedicated circuit, but is
greatly limited in the amount of randomness it can generate
on account of only being able to generate entropy at power-
up; not a very compelling case for FERNS TRNG thus far.
The strength of the FERNS method is the ability to generate
true random numbers without any dedicated circuitry. Both the
hash function and the SRAM itself are common parts which
can be reused, helping to amortize the area cost. In embedded
applications such as RFID or smart cards, a cryptographic hash
function is likely to be pre-existing for security functionality.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 16, 2008 at 14:32 from IEEE Xplore. Restrictions apply.

(Holcomb, Burleson, Fu,
IEEE Trans. Comp 58(9),

Sept. 2009)

Monday, October 10, 11

Obtaining Pseudorandom Numbers
 For security applications, want “cryptographically

secure pseudorandom numbers”
 Libraries include:

• OpenSSL
• Microsoft’s Crypto API

 Linux:
• /dev/random
• /dev/urandom - nonblocking, possibly less entropy

 Internally:
• Entropy pool gathered from multiple sources
• Physical sources

Monday, October 10, 11

Buffer overflow attacks
void foo (char *argv[])
{
push %ebp
mov %esp,%ebp

char buf[128];
sub $0x88,%esp
mov 0x8(%ebp),%eax

strcpy(buf, argv[1]);
add $0x4,%eax
mov (%eax),%eax
mov %eax,0x4(%esp)
lea -0x80(%ebp),%eax
mov %eax,(%esp)
call 804838c <strcpy@plt>

}
leave
ret

ret/IP

Saved FP

buf

Caller’s
stack
frame

Stack

Monday, October 10, 11

How to defend against this?
void foo (char *argv[])
{
push %ebp
mov %esp,%ebp

char buf[128];
sub $0x88,%esp
mov 0x8(%ebp),%eax

strcpy(buf, argv[1]);
add $0x4,%eax
mov (%eax),%eax
mov %eax,0x4(%esp)
lea -0x80(%ebp),%eax
mov %eax,(%esp)
call 804838c <strcpy@plt>

}
leave
ret

ret/IP

Saved FP

buf

Caller’s
stack
frame

Stack

Monday, October 10, 11

Stack Canary
void foo (char *argv[])
{
int canary = <random>;
char buf[128];
strcpy(buf, argv[1]);
assert(canary unchanged);
}

ret/IP

Saved FP

buf

Caller’s
stack
frame Stack

Canary

Monday, October 10, 11

Stack Canary
void foo (char *argv[])
{
int canary = <random>;
char buf[128];
strcpy(buf, argv[1]);
assert(canary unchanged);
}

ret/IP

Saved FP

buf

Caller’s
stack
frame Stack

Canary

Any Canary Advice?

Monday, October 10, 11

Stack Canary
void foo (char *argv[])
{
int canary = <random>;
char buf[128];
strcpy(buf, argv[1]);
assert(canary unchanged);
}

ret/IP

Saved FP

buf

Caller’s
stack
frame Stack

Canary

Any Canary Advice?
• Null byte stops strcpy() bugs
• CR-LF stops gets() bugs
• EOF stops fread() bugs

Monday, October 10, 11

StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function
pointers and setjmp buffers
• Worse performance penalty

 StackGuard doesn’t completely solve the problem
(can be defeated)

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanary

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

Monday, October 10, 11

Non-Executable Stack
 NX bit for pages in memory

• Modern Intel and AMD processors support
• Modern OS support as well

 Some applications need executable stack
• For example, LISP interpreters

 Does not defend against return-to-libc exploits
• Overwrite return address with the address of an existing

library function (can still be harmful)
• Newer: Return-oriented programming

…nor against heap and function pointer overflows
…nor changing stack internal variables (auth

flag, ...)
Monday, October 10, 11

PointGuard

 Attack: overflow a function pointer so that it points
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will

dereference to a “random” memory address

Monday, October 10, 11

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

Monday, October 10, 11

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

Monday, October 10, 11

PointGuard Issues

Must be very fast
• Pointer dereferences are very common

 Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there
 Attacker should not be able to modify the key

• Store key in its own non-writable memory page
 PG’d code doesn’t mix well with normal code

• What if PG’d code needs to pass a pointer to OS kernel?

Monday, October 10, 11

Other solutions

 Use safe programming languages, e.g., Java
• What about legacy C code?

 Static analysis of source code to find overflows
 Randomize stack location or encrypt return address

on stack by XORing with random string
• Attacker won’t know what address to use in his or her

string

Monday, October 10, 11

Timing Attacks

 Assume there are no “typical” bugs in the
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Monday, October 10, 11

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long
 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Monday, October 10, 11

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Monday, October 10, 11

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 sleep for 1 second

Monday, October 10, 11

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

 sleep for 1 second

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
• Total tries: 256*8 = 2048

Monday, October 10, 11

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption and signature scheme
– It’s also used in many cryptographic protocols and products

Monday, October 10, 11

