CSE 484 / CSE M 584 (Autumn 2011)

Cryptography (cont.)

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Updates Oct. I7th

- Lab I is due Friday
- TA office hours Fri before class (12-2:20, CSE 002)
- My office hours today, Wed after class (CSE 210)
- 584 paper reviews
- What are you doing to Emacs?

Today

- Today's symmetric algorithm: AES block cipher
- Cryptographic primitives: how to use a block cipher
- Evaluating privacy and integrity

DES and 56 bit keys (Stallings Tab 2.2)

- 56 bit keys are quite short

Key Size (bits)	Number of Alternative Keys	Time required at $\mathbf{1}$ encryption $/ \boldsymbol{\mu} \mathbf{s}$	Time required at 10^{6} encryptions $/ \boldsymbol{s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

1999: EFF DES Crack + distibuted machines

- < 24 hours to find DES key
- DES ---> 3DES
- 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

- New federal standard as of 2001
- Based on the Rijndael algorithm

128-bit blocks, keys can be 128, 192 or 256 bits

- Unlike DES, does not use Feistel structure
- The entire block is processed during each round
- Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
128-bit key

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4×4 array of 8 -bit bytes)
128-bit key

Basic Structure of Rijndael

128-bit plaintext

$\square \square \square \square \square$ (arranged as 4×4 array of 8-bit bytes)
$\square \square \square \square$

S byte substitution

Basic Structure of Rijndael

Basic Structure of Rijndael

Basic Structure of Rijndael

Basic Structure of Rijndael

Basic Structure of Rijndael

Encrypting a Large Message

-So, we've got a good block cipher, but our plaintext is larger than 128-bit block size

-What should we do?

Electronic Code Book (ECB) Mode

Electronic Code Book (ECB) Mode

- Identical blocks of plaintext produce identical blocks of ciphertext

Electronic Code Book (ECB) Mode

- Identical blocks of plaintext produce identical blocks of ciphertext
- No integrity checks: can mix and match blocks

Cipher Block Chaining (CBC) Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
- Still does not guarantee integrity

CBC Mode: Decryption

ECB vs. CBC

Information Leakage in ECB Mode

Encrypt in ECB mode

CBC and Electronic Voting

Initialization vector (supposed to be random)

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, totalSize, DESKEY, NULL, DES_ENCRYPT)

Counter (CTR) Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Still does not guarantee integrity
- Fragile if ctr repeats

CTR Mode: Decryption

OSSEMazancurab

Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

When Is an Encryption Scheme "Secure"?

- Hard to recover the key?
- What if attacker can learn plaintext without learning the key?
- Hard to recover plaintext from ciphertext?
- What if attacker learns some bits or some function of bits?
- Fixed mapping from plaintexts to ciphertexts?
- What if attacker sees two identical ciphertexts and infers that the corresponding plaintexts are identical?
- Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?

- Assume that the attacker knows the encryption algorithm and wants to learn information about some ciphertext
- Main question: what else does attacker know?
- Depends on the application in which cipher is used!
- Ciphertext-only attack

Known-plaintext attack (stronger)

- Knows some plaintext-ciphertext pairs
- Chosen-plaintext attack (even stronger)
- Can obtain ciphertext for any plaintext of his choice
-Chosen-ciphertext attack (very strong)
- Can decrypt any ciphertext except the target
- Sometimes very realistic model

Defining Security (Not Required)

- Attacker does not know the key
- He chooses as many plaintexts as he wants, and learns the corresponding ciphertexts
- When ready, he picks two plaintexts M_{0} and M_{1}
- He is even allowed to pick plaintexts for which he previously learned ciphertexts!
Δ He receives either a ciphertext of M_{0}, or a ciphertext of M_{1}
He wins if he guesses correctly which one it is

Defining Security (Not Required)

- Idea: attacker should not be able to learn even a single bit of the encrypted plaintext
- Define $\operatorname{Enc}\left(\mathrm{M}_{0}, \mathrm{M}_{1}, \mathrm{~b}\right)$ to be a function that returns encrypted M_{b} 0 or 1
- Given two plaintexts, Enc returns a ciphertext of one or the other depending on the value of bit b
- Think of Enc as a magic box that computes ciphertexts on attacker's demand. He can obtain a ciphertext of any plaintext M by submitting $M_{0}=M_{1}=M$, or he can try to learn even more by submitting $M_{0} \neq M_{1}$.
- Attacker's goal is to learn just one bit b

Chosen-Plaintext Security (Not Required)

Consider two experiments (A is the attacker)

Experiment 0

Experiment 1
A interacts with Enc(-,-,0)
and outputs bit d
A interacts with Enc(-,-,1)
and outputs bit d

- Identical except for the value of the secret bit
- d is attacker's guess of the secret bit
- Attacker's advantage is defined as

If A "knows" secret bit, he should be able to make his output depend on it
$\operatorname{Prob}(A$ outputs 1 in Exp0) $-\operatorname{Prob}(A$ outputs 1 in Exp1)) |

- Encryption scheme is chosen-plaintext secure if this advantage is negligible for any efficient A

"Simple" Example (Not Required)

Any deterministic, stateless symmetric encryption scheme is insecure

- Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts
- This includes ECB mode of common block ciphers!

Attacker A interacts with Enc(,,-- b)
Let X, Y be any two different plaintexts
$\mathrm{C}_{1} \leftarrow \operatorname{Enc}(\mathrm{X}, \mathrm{Y}, \mathrm{b}) ; \quad \mathrm{C}_{2} \leftarrow \operatorname{Enc}(\mathrm{Y}, \mathrm{Y}, \mathrm{b}) ;$
If $C_{1}=C_{2}$ then $b=1$ else say $b=0$

- The advantage of this attacker A is 1
$\operatorname{Prob}(A$ outputs 1 if $b=0)=0 \quad \operatorname{Prob}(A$ outputs 1 if $b=1)=1$

Why Hide Everything?

Leaking even a little bit of information about the plaintext can be disastrous

- Electronic voting
- 2 candidates on the ballot (1 bit to encode the vote)
- If ciphertext leaks the parity bit of the encrypted plaintext, eavesdropper learns the entire vote
- Also, want a strong definition, that implies others

Birthday attacks

- Are there two people in the first $1 / 3$ of this classroom that have the same birthday?
- Yes?
- No?

Birthday attacks

-Why is this important for cryptography?

- 365 days in a year (366 some years)
- Pick one person. To find another person with same birthday would take on the order of $365 / 2=182.5$ people
- Expect "collision" -- two people with same birthday -- with a room of only 23 people
- For simplicity, approximate when we expect a collision as the square root of 365 .
- 2^{128} different 128 -bit keys
- Pick one key at random. To exhaustively search for this key requires trying on average 2^{127} keys.
- Expect a "collision" after selecting approximately 2^{64} random keys.
- 64 bits of security against collision attacks, not 128 bits.

