CSE 484 / CSE M 584 (Autumn 2011)

Cryptography (cont.)

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Updates Oct. I9th

- Lab I is due Friday
- TA office hours Fri before class (12-2:20, CSE 002)
- My office hours today after class (CSE 2IO)

Today

- Integrity for symmetric crypto
- More generally, hash functions

Achieving Integrity (Symmetric)

Message authentication schemes: A tool for protecting integrity.
(Also called message authentication codes or MACs.)

CBC Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
- Still does not guarantee integrity

CBC-MAC

- Not secure when system may MAC messages of different lengths.
- NIST recommends a derivative called CMAC (not required)

Broad Class of Hash Functions

- H is a lossy compression function
- Collisions: $\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right)$ for distinct inputs $\mathrm{x}, \mathrm{x}^{\prime}$
- Result of hashing should "look random" (make this precise later)
- Intuition: half of digest bits are "1"; any bit in digest is " 1 " half the time
- Cryptographic hash function needs a few properties...

One-Way

- Intuition: hash should be hard to invert
- "Preimage resistance"
- Let $h\left(x^{\prime}\right)=y \in\{0,1\}^{n}$ for a random x^{\prime}
- Given y, it should be hard to find any x such that $h(x)=y$
- How hard?
- Brute-force: try every possible x, see if $h(x)=y$
- SHA-1 (common hash function) has 160-bit output
- Expect to try 2^{159} inputs before finding one that hashes to y.

Collision Resistance

Should be hard to find distinct x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Brute-force collision search is only $\mathrm{O}\left(2^{\mathrm{n} / 2}\right)$, not $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$
- Birthday paradox (informal)
- Let t be the number of values $x, x^{\prime}, x^{\prime \prime}$... we need to look at before finding the first pair $\mathrm{x}, \mathrm{x}^{\prime}$ s.t. $\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right)$
- What is probability of collision for each pair x, x^{\prime} ?
- How many pairs would we need to look at before finding the first collision?
- How many pairs $\mathrm{x}, \mathrm{x}^{\prime}$ total?
- What is t ?

Collision Resistance

Should be hard to find distinct x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Brute-force collision search is only $\mathrm{O}\left(2^{\mathrm{n} / 2}\right)$, not $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$
- Birthday paradox (informal)
- Let t be the number of values $x, x^{\prime}, x^{\prime \prime}$... we need to look at before finding the first pair x, x^{\prime} s.t. $h(x)=h\left(x^{\prime}\right)$
- What is probability of collision for each pair x, x^{\prime} ? $1 / 2^{n}$
- How many pairs would we need to look at before finding the first collision?
- How many pairs $\mathrm{x}, \mathrm{x}^{\prime}$ total?
- What is t ?

Collision Resistance

Should be hard to find distinct x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Brute-force collision search is only $\mathrm{O}\left(2^{\mathrm{n} / 2}\right)$, not $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$

Birthday paradox (informal)

- Let t be the number of values $x, x^{\prime}, x^{\prime \prime}$... we need to look at before finding the first pair $\mathrm{x}, \mathrm{x}^{\prime}$ s.t. $\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right)$
- What is probability of collision for each pair x, x^{\prime} ? $1 / 2^{n}$
- How many pairs would we need to look at before finding the first collision?
$\mathrm{O}\left(2^{\mathrm{n}}\right)$
- How many pairs $\mathrm{x}, \mathrm{x}^{\prime}$ total?
- What is t ?

Collision Resistance

Should be hard to find distinct x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Brute-force collision search is only $O\left(2^{n / 2}\right)$, not $O\left(2^{n}\right)$
- For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$
- Birthday paradox (informal)
- Let t be the number of values $x, x^{\prime}, x^{\prime \prime}$... we need to look at before finding the first pair x, x^{\prime} s.t. $h(x)=h\left(x^{\prime}\right)$
- What is probability of collision for each pair x, x^{\prime} ? $1 / 2^{n}$
- How many pairs would we need to look at before finding the first collision?
$\mathrm{O}\left(2^{\mathrm{n}}\right)$
- How many pairs $\mathrm{x}, \mathrm{x}^{\prime}$ total? Choose $(\mathrm{t}, 2)=\mathrm{t}(\mathrm{t}-1) / 2 \sim \mathrm{O}\left(\mathrm{t}^{2}\right)$
- What is t ?

Collision Resistance

Should be hard to find distinct x, x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Brute-force collision search is only $O\left(2^{n / 2}\right)$, not $O\left(2^{n}\right)$
- For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$
- Birthday paradox (informal)
- Let t be the number of values $x, x^{\prime}, x^{\prime \prime}$... we need to look at before finding the first pair x, x^{\prime} s.t. $h(x)=h\left(x^{\prime}\right)$
- What is probability of collision for each pair x, x^{\prime} ? $1 / 2^{n}$
- How many pairs would we need to look at before finding the first collision?
$\mathrm{O}\left(2^{\mathrm{n}}\right)$
- How many pairs $\mathrm{x}, \mathrm{x}^{\prime}$ total? Choose $(\mathrm{t}, 2)=\mathrm{t}(\mathrm{t}-1) / 2 \sim \mathrm{O}\left(\mathrm{t}^{2}\right)$
-What is t ? $2^{n / 2}$

One-Way vs. Collision Resistance

One-Way vs. Collision Resistance

- One-wayness does not imply collision resistance
- Suppose g is one-way
- Define $h(x)$ as $g\left(x^{\prime}\right)$ where x^{\prime} is x except the last bit
$-h$ is one-way (to invert h, must invert g)
- Collisions for h are easy to find: for any $x, h(x 0)=h(x 1)$

One-Way vs. Collision Resistance

- One-wayness does not imply collision resistance
- Suppose g is one-way
- Define $h(x)$ as $g\left(x^{\prime}\right)$ where x^{\prime} is x except the last bit
- h is one-way (to invert h, must invert g)
- Collisions for h are easy to find: for any $x, h(x 0)=h(x 1)$
- Collision resistance does not imply one-wayness
- Suppose g is collision-resistant
- Define $h(x)$ to be $0 x$ if x is n-bit long, $1 g(x)$ otherwise
- Collisions for h are hard to find: if y starts with 0 , then there are no collisions, if y starts with 1 , then must find collisions in g
- h is not one way: half of all y 's (those whose first bit is 0) are easy to invert (how?); random y is invertible with probab. $1 / 2$

Weak Collision Resistance

Given randomly chosen x, hard to find x^{\prime} such that $h(x)=h\left(x^{\prime}\right)$

- Attacker must find collision for a specific x. By contrast, to break collision resistance it is enough to find any collision.
- Brute-force attack requires $\mathrm{O}\left(2^{n}\right)$ time
- AKA second-preimage collision resistance
- Weak collision resistance does not imply collision resistance

Which Property Do We Need?

- UNIX passwords stored as hash(password)
- One-wayness: hard to recover the/a valid password
- Integrity of software distribution
- Weak collision resistance (second-preimage resistance)
- But software images are not really random...
- Auction bidding
- Alice wants to bid B, sends $H(B)$, later reveals B
- One-wayness: rival bidders should not recover B (this may mean that she needs to hash some randomness with B too)
- Collision resistance: Alice should not be able to change her mind to bid B^{\prime} such that $H(B)=H\left(B^{\prime}\right)$

Common Hash Functions

- MD5
- 128-bit output
- Designed by Ron Rivest, used very widely
- Collision-resistance broken (summer of 2004)
- RIPEMD-160
- 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)

- 160-bit output
- US government (NIST) standard as of 1993-95
- Also recently broken! (Theoretically -- not practical.)

SHA-256, SHA-512, SHA-224, SHA-384
SHA-3: Forthcoming.

Basic Structure of SHA-1 (Not Required)

How Strong Is SHA-1?

- Every bit of output depends on every bit of input
- Very important property for collision-resistance

Brute-force inversion requires 2^{160} ops, birthday attack on collision resistance requires 2^{80} ops

- Some recent weaknesses (2005)
- Collisions can be found in 2^{63} ops

International Criminal Tribunal for Rwanda (Example Application)

http://www.nytimes.com/2009/01/27/science/ 27arch.html? r=1\&ref=science

Adama Dieng
CB44-8847-D68D-8CD2-C2F5 $22 \mathrm{FE}-177 \mathrm{~B}-2 \mathrm{C} 30-3549$-C211

Alfred Kwende
C690-FC5A-8EB7-0B83-B99D
2593-608A-F421-BEE4-16B2

Angeline Djampou
EA39-EC39-A5D0-314D-04A6
5258-572C-9268-8CB7-6404

Sir Dennis Byron
CA46-BE7A-B8F6-095A-C706
1C60-31E7-F9EA-AF96-E2CE

Avi Singh
CD69-2CB5-78CB-D8D7-7D81
F9B2-9CEA-5B79-DA4F-3806

Everard O'Donnell
909F-86AB-C1B8-57A7-9CF6
5BCD-7F5E-F4F6-68CA-70D1

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

HMAC

- Construct MAC by applying a cryptographic hash function to message and key
- Invented by Bellare, Canetti, and Krawczyk (1996)
- Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Recall: Often desire both privacy and integrity. (For SSH, SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.
$\bar{D}_{K e, K m}$

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

$\overline{E K K e, K m}$

$\bar{D}_{K e, K m}$

M

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

$\overline{E K K e, K m}$

$\overline{D K e, K m}$

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

Ciphertext

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

Ciphertext

Ciphertext

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

Ciphertext

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

$\overline{\mathrm{D}}_{\mathrm{ke}, \mathrm{Km}}$

Ciphertext

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption scheme and a MAC.

$\overline{\mathrm{D}}_{\mathrm{k}, \mathrm{K} m}$

But insecure! [BN, Kra]

Assume Alice sends messages:

If $T_{i}=T_{j}$ then $M_{i}=M_{j}$
Adversary learns whether two plaintexts are equal.
Especially problematic when M_{1}, M_{2}, \ldots take on only a small number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

If $T_{i}=T_{j}$ then $M_{i}=M_{j}$
Adversary learns whether two plaintexts are equal.
Especially problematic when M_{1}, M_{2}, \ldots take on only a small number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

Adversary learns whether two plaintexts are equal.
Especially problematic when M_{1}, M_{2}, \ldots take on only a small number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

If $T_{i}=T_{j}$ then $M_{i}=M_{j}$
Adversary learns whether two plaintexts are equal.
Especially problematic when M_{1}, M_{2}, \ldots take on only a small number of possible values.

Results of [BN00,KraOI]

			Ciphertext C Encrypt-and-MAC
Privacy	Strong (CCA)	Weak (CPA)	Insecure
Integrity	Strong (CTXT)	Weak (PTXT)	Weak (PTXT)

