
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Web Security (cont.)

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Wednesday, October 26, 11

Today, 10/26

• Web Security

• Office hours after class in CSE 210

• Security Reviews & Current Event Reports

• Groups of 1-3, 1 submission per group

• First of each due: Friday, Nov. 4

Wednesday, October 26, 11

Cookies

Wednesday, October 26, 11

Storing Info Across Sessions

A cookie is a data blob created by an Internet site
to store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Send cookies later

HTTP is traditionally a stateless protocol; cookies add state

Includes domain (who can read it), expiration,
“secure” (can be read only over SSL)

Wednesday, October 26, 11

What Are Cookies Used For?

Authentication
• Use the fact that the user authenticated correctly in

the past to make future authentication quicker
Personalization

• Recognize the user from a previous visit
Tracking

• Follow the user from site to site; learn his/her
browsing behavior, preferences, and so on

Wednesday, October 26, 11

Web Authentication via Cookies

Need authentication system that works over HTTP
and does not require servers to store session data

Servers can use cookies to store state on client
• When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
– Authenticator is a value that client cannot forge on his own
– Example: MAC(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

Wednesday, October 26, 11

Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

Wednesday, October 26, 11

Cookie Management

Cookie ownership
• Once a cookie is saved on your computer, only the

website that created the cookie can read it
(supposedly)

Variations
• Temporary cookies

– Stored until you quit your browser

• Persistent cookies
– Remain until deleted or expire

• Third-party cookies
– Set by sites embedded within other sites (e.g., ads)

Wednesday, October 26, 11

Privacy Issues with Cookies

Cookie may include any information about you
known by the website that created it
• Browsing activity, account information, etc.

Sites can share this information
• Advertising networks
• 2o7.net tracking cookie

Browser attacks could invade your privacy
 November 8, 2001 (and many more since):
 Users of Microsoft's browser and e-mail programs could be

vulnerable to having their browser cookies stolen or
modified due to a new security bug in Internet Explorer
(IE), the company warned today

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Change this to 2.00

Wednesday, October 26, 11

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price, to
purchase products at any price they choose.

 Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

Wednesday, October 26, 11

Storing State in Browser Cookies

Wednesday, October 26, 11

Storing State in Browser Cookies

Set-cookie: price=299.99

Wednesday, October 26, 11

Storing State in Browser Cookies

Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99

Wednesday, October 26, 11

Storing State in Browser Cookies

Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?

Wednesday, October 26, 11

Storing State in Browser Cookies

Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?
Add a MAC to every cookie, computed with the

server’s secret key
• Price=299.99; MAC(ServerKey, 299.99)

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=pricemac VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=pricemac VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=pricemac VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

A319F...3C

MAC(K, “$2”)

Wednesday, October 26, 11

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=pricemac VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

A319F...3C

MAC(K, “$2”)

Better: MAC(K, “$20,Black leather purse, product number 12345, ...”)
Wednesday, October 26, 11

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user||key) as authenticator
• Key is secret and known only to the server. Without the

key, clients can’t forge authenticators.
• || is string concatenation

 Implementation: user,crypt(user||key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused
AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused
AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

Wednesday, October 26, 11

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused
AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• Minutes with a simple Perl script vs. billions of years
Wednesday, October 26, 11

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

Main lesson: be careful rolling your own
• Homebrewed authentication schemes are easy to get

wrong
There are standard cookie-based schemes

Wednesday, October 26, 11

Online banking, shopping, government, etc.
Website takes input from user, interacts with back-

end databases and third parties, outputs results by
generating an HTML page

Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

Security is a potential concern.
• Poorly written scripts
• Sensitive data stored in world-readable files

Web Applications

Wednesday, October 26, 11

General issue: Inadequate Input
Validation

http://victim.com/copy.php?name=username
copy.php includes
 system(“cp temp.dat $name.dat”)
User calls
 http://victim.com/copy.php?name=“a; rm *”
copy.php executes
 system(“cp temp.dat a; rm *.dat”);

Supplied by the user!

Wednesday, October 26, 11

JavaScript

Language executed by browser
• Can run before HTML is loaded, before page is viewed,

while it is being viewed or when leaving the page
Often used to exploit other vulnerabilities

• Attacker gets to execute some code on user’s machine
Cross-site scripting:

• Attacker inserts malicious JavaScript into a Web page or
HTML email; when script is executed, it steals user’s
cookies and hands them over to attacker’s site

Wednesday, October 26, 11

JavaScript Security Model

Script runs in a “sandbox”
• Not allowed to access files or talk to the network

Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other
User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

Wednesday, October 26, 11

Risks of Poorly Written Scripts

For example, echo user’s input

http://naive.com/search.php?term=“Security is Happiness”

search.php responds with

<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

Wednesday, October 26, 11

Risks of Poorly Written Scripts

For example, echo user’s input

http://naive.com/search.php?term=“Security is Happiness”

search.php responds with

<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

Wednesday, October 26, 11

