
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Web Security (cont.)

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Monday, October 31, 11

Today, 10/31

• Finish web security

• Start user authentication

• Reminder: Catalyst posts are due this Friday,
11/4

• HW 2: office hours after class in CSE 210

Monday, October 31, 11

Web Security so Far
• Need to secure both sides: User and Server

• HTTP(S), Forms, Cookies, JavaScript

• Servers shouldn’t trust users

• Validate/clean input

• Check integrity of data, even in, e.g.,
hidden fields or cookies

• Servers shouldn’t trust each other

• e.g., XSS and CSRF attacks

• Lower parts of the stack need securing, e.g., DNS

Monday, October 31, 11

Cheating the Same Origin Policy

JavaScript same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port

But can an attacker change the server?
• Yes! If an attacker can control DNS (Domain Name

Service)

Monday, October 31, 11

DNS: Domain Name Service

Client
Local

DNS recursive
resolver

root & edu
DNS server

www.cs.washington.edu

NS washington.eduwww.cs.w
ashington.edu

washington.edu
DNS serverNS cs.washington.edu

www=IPaddr
cs.washington.edu

DNS server

DNS maps symbolic names to numeric IP addresses
(for example, www.cs.washington.edu ↔ 128.208.3.88)

Monday, October 31, 11

http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://www.cs.utexas.edu/
http://www.cs.utexas.edu/

DNS Vulnerabilities

 DNS host-address mappings are not authenticated
 DNS implementations have vulnerabilities

• Reverse query buffer overrun in old releases of BIND
– Gain root access, abort DNS service…

• MS DNS for NT 4.0 crashes on chargen stream
– telnet ntbox 19 | telnet ntbox 53

 Denial of service is a risk
• If can’t use DNS ... can’t use the “Internet”

 Just recently (summer 2010) DNSSEC starting to be
deployed
• http://www.commerce.gov/news/press-releases/2010/07/16/

commerce-department-icann-and-verisign-deploy-new-technology-
enhance-

Monday, October 31, 11

http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-
http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-
http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-
http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-
http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-
http://www.commerce.gov/news/press-releases/2010/07/16/commerce-department-icann-and-verisign-deploy-new-technology-enhance-

Reverse DNS Spoofing

Trusted access is often based on host names
• E.g., permit access to website from all .cs.washington.edu

IPs
Network requests such as Web or ssh arrive from

numeric source addresses
• System performs reverse DNS lookup to determine

requester’s host name and checks if it’s in .htaccess
 If attacker can spoof the answer to reverse DNS

query, he can fool target machine into thinking that
request comes from an authorized host
• No authentication for DNS responses and typically no

double-checking (numeric → symbolic → numeric)
Monday, October 31, 11

Other DNS Risks

DNS cache poisoning
• False IP with a high time-to-live will stay in the cache of

the DNS server for a long time
• Basis of pharming

Spoofed ICANN registration and domain hijacking
• Authentication of domain transfers based on email addr
• Aug ’04: teenager hijacks eBay’s German site
• Jan ’05: hijacking of panix.com (oldest ISP in NYC)

– "The ownership of panix.com was moved to a company in Australia, the actual DNS
records were moved to a company in the United Kingdom, and Panix.com's mail has been
redirected to yet another company in Canada."

Misconfiguration and human error

Monday, October 31, 11

Monday, October 31, 11

JavaScript/DNS Intranet attack (I)

Consider a Web server intra.good.net
• IP: 10.0.0.7, inaccessible outside good.net network
• Hosts sensitive CGI applications

Attacker at evil.org gets good.net user to
browse www.evil.org

Places Javascript on www.evil.org that
accesses sensitive application on intra.good.net
• This doesn’t work because Javascript is subject to

“same-origin” policy
• … but the attacker controls evil.org DNS

Monday, October 31, 11

JavaScript/DNS Intranet attack (II)

good.net
browser Evil.org

DNS

Lookup www.evil.org

222.33.44.55

Evil.org
Web

GET /, host www.evil.org

Response

Evil.org
DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short TTL

Intra.good.net
10.0.0.7– compromise!

Monday, October 31, 11

Web Security so Far

• ...

• Lower parts of the stack need securing, e.g., DNS

• Higher parts of the stack need securing, e.g., SQL

• ...

Monday, October 31, 11

User Data in SQL Queries

set UserFound=execute(
 “SELECT * FROM UserTable WHERE ”
 “username=′ ” & form(“user”) & “ ′ AND ”
 “password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail
(Notation approximate, to focus on key issues)

Only true if the result of SQL
query is not empty, i.e., user/pwd
is in the database

Monday, October 31, 11

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

Monday, October 31, 11

It Gets Better (or Worse?)

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

Monday, October 31, 11

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Monday, October 31, 11

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

Monday, October 31, 11

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

Monday, October 31, 11

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’)
 user_level=‘103’, user_aim=(‘???????’)
WHERE user_id=‘userid’

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

Monday, October 31, 11

http://xkcd.com/327/
Monday, October 31, 11

http://xkcd.com/327/
http://xkcd.com/327/

Finally: don’t forget
about the user side!

Monday, October 31, 11

Dangerous Websites
 2006 “Web patrol” study at Microsoft identified 752

unique URLs that could successfully exploit unpatched
Windows XP machines
• Many are interlinked by redirection and controlled by the same

major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get into

search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75 “innocuous”

sites focusing on (1) celebrities, (2) song lyrics, (3) wallpapers, (4)
video game cheats, and (5) wrestling

 Similar study at UW
Now distributed through emails and ads

Monday, October 31, 11

Browser Security Design
• “App Isolation: Get the Security of Multiple Browsers with Just One”

• Talk Wednesday @4:30 in CSE 403 by Charlie Reis
(UW CSE Ph.D. ’09)

Abstract: Many browser-based attacks like XSS, CSRF, and
even renderer exploits can be prevented by using
separate browsers for separate web sites. That's not
practical for most users, so it would be nice to get similar
protection within a single browser. In this talk, I will discuss which
aspects of using multiple browsers help with security and how we
can get these benefits in a single browser, with some compatibility
costs. I will describe how we are starting to deploy these ideas in
Chrome as an opt-in feature for apps in the Chrome Web Store.

Monday, October 31, 11

