
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Asymmetric Cryptography

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Monday, December 5, 11

Class updates

• (Short) Homework 3

• Due next Wednesday

• Individual assignment

• (Short) Lab 3 out after class today

• Short, fun privacy “scavenger hunt”

• Groups of 1 to 3

Monday, December 5, 11

Homework 2 notes

• (TA request: put name on every page)

• 30 people with public keys: how many key
transfers?

• What is the average complexity of breaking a
56-bit key?

Monday, December 5, 11

Crypto Protocols

• Last time:

• Key establishment with 2 parties

• Today:

• Key establishment with authority

Monday, December 5, 11

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, want to talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Monday, December 5, 11

Reflection Attack

Bob

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Monday, December 5, 11

Reflection Attack

Bob

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB(N3)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB(N3)

EncryptKAB(N3-1, N4)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB(N3)

EncryptKAB(N3-1, N4)Extract EncryptKAB(N3-1)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB(N3)

EncryptKAB(N3-1, N4)Extract EncryptKAB(N3-1)

Now successfully authenticate in first session…

EncryptKAB(N3-1)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Monday, December 5, 11

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, wanna talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Another issue: If learn KAB after session completes,
then can re-use. (Solution: timestamps, nonces.)

Monday, December 5, 11

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Monday, December 5, 11

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Alice’s reasoning:
• The only person who could know NA
 is the person who decrypted 1st message
• Only Bob can decrypt message encrypted with
 Bob’s public key
• Therefore, Bob is on the other end of the line
 Bob is authenticated!

Monday, December 5, 11

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Alice’s reasoning:
• The only person who could know NA
 is the person who decrypted 1st message
• Only Bob can decrypt message encrypted with
 Bob’s public key
• Therefore, Bob is on the other end of the line
 Bob is authenticated!

Bob’s reasoning:
• The only way to learn NB is
 to decrypt 2nd message
• Only Alice can decrypt 2nd message
• Therefore, Alice is on the other end

Alice is authenticated!

Monday, December 5, 11

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

EncryptPublicKey(Bob)(NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Monday, December 5, 11

EncryptPublicKey(Bob)(“Alice”, NA)

Evil Bob tricks honest Alice
into revealing Charlie’s
secret Nc (and already knew NA)

Charlie is convinced that he is talking to Alice!

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

EncryptPublicKey(Bob)(NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Monday, December 5, 11

Lessons of Needham-Schroeder

This is yet another example of design challenges
• Alice is correct that Bob must have decrypted

EncryptPublicKey(Bob)(“Alice”, NA), but this does not mean that
EncryptPublicKey(Alice)(NA, NB) came from Bob

 It is important to realize limitations of protocols
• The attack requires that Alice willingly talk to attacker

– Attacker uses a legitimate conversation with Alice to impersonate
Alice to Charlie

Monday, December 5, 11

SSL

Monday, December 5, 11

What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

Based on Secure Sockets Layers (SSL) protocol,
version 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser
Monday, December 5, 11

SSL / TLS in the Real World

Monday, December 5, 11

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects against application-level threats
(e.g.,server impersonation), NOT against IP-
level threats (spoofing, SYN flood, DDoS by
data flood)

Monday, December 5, 11

History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1

Monday, December 5, 11

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC

TLS version 1.0 is described in RFC 5246
 Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers who

will be implementing it and those who will be doing
protocol analysis

• Mixture of informal prose and pseudo-code

Monday, December 5, 11

Evolution of the SSL/TLS RFC

15.00

31.25

47.50

63.75

80.00

SSL 2.0 SSL 3.0 TLS 1.0

Page count

104 pages for TLS 1.2

Monday, December 5, 11

TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server
Record protocol

• Use the secret key established in the handshake
protocol to protect communication between the client
and the server

We will focus on the handshake protocol

Monday, December 5, 11

TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of the

protocol
Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

Use public keys to establish a shared secret

Monday, December 5, 11

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

Monday, December 5, 11

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms

Monday, December 5, 11

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g., RSA or

Diffie-Hellman)

Monday, December 5, 11

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by
 both client and server
• Strongest cryptographic suite selected
 from those offered by the client

Monday, December 5, 11

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

Monday, December 5, 11

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

Monday, December 5, 11

“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Monday, December 5, 11

Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol without finished

message from client)

Server is fooled into thinking it
is communicating with a client
who supports only SSL 2.0

Monday, December 5, 11

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is not
authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA

algorithms, no handshake while session is open

Monday, December 5, 11

Protocol Rollback Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version in early
designs

Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

Monday, December 5, 11

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left
side of this secret if server
said Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

Monday, December 5, 11

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left
side of this secret if server
said Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2

Monday, December 5, 11

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

Monday, December 5, 11

