

Web Security
Section 5

Some Content borrowed from Google Code University Roy McElmurry

XSS

● Idea: Place User provided data in the page
● Pros: makes pages more interactive and

personal
● Cons: improperly used data could be

interpreted as code
● Solutions: Make sure that user data is sanitized

and validated with a whitelist approach

XSSI

● Idea: Some script content can be loaded in the
context of the current domain, against the usual
mechanism of the same domain policy

● Pros: Allows reuse of scripted code under the
context of the current domain, allows for
javascript services

● Cons: Attackers can provide malicious scripts or
invoke services in the current domain's context

● Solution: Make sure the code comes from a
trusted site

XSRF

● Idea: Have web services and accounts whose
data can be changed via the web

● Pros: A website can be customized and made
more user friendly

● Cons: Someone can make these calls for you
with undesired results

● Solutions: inspect header, require user-provided
secret, add nonce token to forms and verify
legitimate requests

HTTP State

● HTTP is a stateless protocol
● This means the state machine for the protocol

is very simplistic (request and response)
● However developers want state in order to build

staged user experiences
● Solution: provide state to user and have them

echo it back in future requests

Attempt 1: Hidden Fields

● Let's give the user hidden fields that will hold
state variables for us to use on later requests

<html>
<head>

<title>Pay for Pizza</title>
</head>
<body>

<form action="submit_order" method="GET">
<p> The total cost is 5.50. Are you sure you
would like to order? </p>
<input type="hidden" name="price" value="5.50">
<input type="submit" name="pay" value="yes">
<input type="submit" name="pay" value="no">

</form>
</body>

</html>

Attempt 1: Problems

Attempt 1: Problems

Attempt 2: Cookies

● Let's store state on the client side, but in a
special file that can only be accessed by code
from the same domain

<script type=”text/javascript”>
document.cookie = “price=$5.00”;

</script>

Attempt 2: Problems

● Cookies can still be sniffed from HTTP requests
● Cookies can still be stolen from injected scripts
● So not much improvement except that the

parameters are not directly visible in Get
requests

Attempt 3: Sessions

● Let's store state on the server side and only
give the user an identifier for it

● If we place this identifier in a cookie it will be
harder to gather

● If we make the session id a hash of the user's ip
address and a nonce it will be harder to spoof

<?php
session_start();
$_SESSION['price'] = 5.0;

?>

Attempt 3: Problems

● All user state is stored server side, this can be a
ton of data

● Search for user session data can be a
bottleneck in the response time

● Sessions need to expire or else sessions can
be reused by attackers

● Placing the session id in cookies does not
eliminate XSRF attacks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

