CSE 484 (Spring 2012), Homework 2. Due May 25, 5pm.

Please include your name and UWNetID on each page of your submission.

1. Mathematical Fundamentals: Modular Arithmetic and Multiplicative Groups.

(a) Compute 17^{574} (mod 2013) using the simple algorithm $17^{*} 17^{* 1} 7^{*} . . . * 17$ (you may use a computer). Then answer these questions: What is the result? How many multiplication operations are invoked? How many non-trivial modulus operations were invoked (i.e., how many times did you reduce modulo 2013 in your calculations?
(b) Compute 17^{574} (mod 2013) using the squaring method described in lecture. Answer these questions: How many multiplication operations are invoked? How many non-trivial modulus operations? Please show your work (you can use a computer, but show each step of the calculation.
(c) What are the subgroups generated by 3,10 , and 22 in the multiplicative group of integers modulo $p=23$? How many elements are in each subgroup?

2. Diffie-Hellman (Cryptography Engineering, problem 11.4).

Consider the Diffie-Hellman protocol shown in the Lecture 16 slide deck.
What problems, if any, could arise if Alice uses the same x and g^{x} for all her communications with Bob, and Bob uses the same y and g^{y} for all his communications with Alice?

3. RSA Improvements (Cryptography Engineering, problem 12.6).

To speed up decryption, Bob has chosen to set his private key $d=3$ and computes e as the inverse of d modulo phi(n). Is this a good design decision?

4. RSA Key Strength (Cryptography Engineering, problem 12.7).

Does a 256-bit RSA key (a key with a 256-bit modulus, i.e., n) provide strength similar to that of a 256-bit AES key?
5. RSA Implementation (Cryptography Engineering, problem 12.8).

Consider the RSA primitive. Let $\mathrm{p}=71, \mathrm{q}=89$, and $\mathrm{e}=3$.
(a) What is n ?
(b) What is phi(n)?
(c) The private exponent d is one of these values: 1103, 4107, 5917. Which is it, and how do you know?
(d) Compute the signature on $m_{1}=5416, m_{2}=2397$, and $m_{3}=m_{1} m_{2}(\bmod n)$ using the basic RSA operation. Show that the third signature is equivalent to the product of the first two signatures. Please show your work. If you use MATLAB, Wolfram|Alpha, Python, or something similar, please show each command you execute and the resulting response.

