CSE 484 [CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Attacks

Fall 2016

Adam (Ada) Lerner
lerner@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Announcements

* Sign the ethics form by today at 5!

* Homework 1is due on Monday.

* Please start forming groups for lab 1

— You can use the forum to find group members

Announcements

* TA office hours have been moved to
Mondays at 4:30 (after class), in the
second floor breakout.

— Sorry for the confusion!

Security: Not Just for PCs

game platforms

10/5/16 CSE 484 | CSE M 584 - Fall 2016 4

Software Problems are Ubiquitous

Posted by kdawson on Sunday February 25, @06:35PM
from the dare-you-to-cross-this-line dept.

mgh02114 writes
"The new US stealth fighter, the F-22 Raptor, was deployed for the first time to Asia earlier this month. On
Feb. 11, twelve Raptors flying from Hawaii to Japan were forced to turn back when a software glitch crashed
all of the F-22s' on-board computers as they crossed the international date line. The delay in arrival in Japan
was previously reported, with rumors of problems with the software. CNN television, however, this morning
reported that every fighter completely lost all navigation and communications when they crossed the
international date line. They reportedly had to turn around and follow their tankers by visual contact back to
Hawaii. According to the CNN story, if they had not been with their tankers, or the weather had been bad, this would have
been serious. CNN has not put up anything on their website yet."

10/5/16 CSE 484 | CSE M 584 - Fall 2016 5

Software Problems are Ubiquitous

1985-1987 -- Therac-25 medical accelerator. A radiation therapy
device malfunctions and delivers lethal radiation doses at several
medical facilities. Based upon a previous design, the Therac-25 was an
"improved" therapy system that could deliver two different kinds of
radiation: either a low-power electron beam (beta particles) or X-rays.
The Therac-25's X-rays were generated by smashing high-power
electrons into a metal target positioned between the electron gun and
the patient. A second "improvement" was the replacement of the older
Therac-20's electromechanical safety interlocks with software control,
a decision made because software was perceived to be more reliable.

What engineers didn't know was that both the 20 and the 25 were
built upon an operating system that had been kludged together by a
programmer with no formal training. Because of a subtle bug called a
"race condition," a quick-fingered typist could accidentally configure
the Therac-25 so the electron beam would fire in high-power mode
but with the metal X-ray target out of position. At least five patients
die; others are seriously injured.

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Software Problems are Ubiquitous

January 15, 1990 -- AT&T Network Outage. A bug in a new
release of the software that controls AT&T's #4ESS long distance
switches causes these mammoth computers to crash when they
receive a specific message from one of their neighboring machines -- a
message that the neighbors send out when they recover from a crash.

One day a switch in New York crashes and reboots, causing its
neighboring switches to crash, then their neighbors' neighbors, and so
on. Soon, 114 switches are crashing and rebooting every six seconds,
leaving an estimated 60 thousand people without long distance service
for nine hours. The fix: engineers load the previous software release.

10/5/16 CSE 484 | CSE M 584 - Fall 2016 7

Software Problems are Ubiquitous

* Other serious bugs (many others exist)
— US Vincennes tracking software
— MV-22 Osprey

— Medtronic Model 8870 Software Application Card

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Adversarial Failures

* Software bugs are bad
— Consequences can be serious

* Even worse when an intelligent adversary
wishes to exploit them!

— Intelligent adversaries: Force bugs into “worst
possible” conditions/states

— Intelligent adversaries: Pick their targets

10/5/16 CSE 484 | CSE M 584 - Fall 2016

BUFFER OVERFLOWS

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Adversarial Failures

 Buffer overflows bugs: Big class of bugs

— Normal conditions: Can sometimes cause systems
to fail

— Adversarial conditions: Attacker able to violate
security of your system (control, obtain private
information, ...)

10/5/16 CSE 484 | CSE M 584 - Fall 2016 1

Reference for Q1

Iop Bottom

Addr 0x00...0 Addr OxFF..F

| }

Eocalvgriable; | Args Addr OxFF..F

Execute code at this address after func() finishes

10/5/16 CSE 484 | CSE M 584 - Fall 2016 12

A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
— Graduate student at Cornell, son of NSA chief scientist

— Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of
community service

— Now an EECS professor at MIT

Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

Due to a coding error, it created new copies as fast
as it could and overloaded infected machines

$10-100M worth of damage

10/5/16 CSE 484 | CSE M 584 - Fall 2016 13

Morris Worm and Buffer Overflow

* One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems

— By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

— Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

10/5/16 CSE 484 | CSE M 584 - Fall 2016 14

Famous Internet Worms

* Buffer overflows: very common cause of Internet attacks

— In 1998, over 50% of advisories published by CERT (computer
security incident report team) were caused by buffer overflows

* Morris worm (1988): overflow in fingerd
— 6,000 machines infected

* CodeRed (2001): overflow in MS-IIS server
— 300,000 machines infected in 14 hours

e SQL Slammer (2003): overflow in MS-SQL server
— 75,000 machines infected in 10 minutes (!!)

* Sasser (2005): overflow in Windows LSASS
— Around 500,000 machines infected

10/5/16 CSE 484 | CSE M 584 - Fall 2016

15

... And More

 Conficker (2008-08): overflow in Windows RPC
— Around 10 million machines infected (estimates vary)

* Stuxnet (2009-10): several zero-day overflows + same
Windows RPC overflow as Conficker
— Windows print spooler service
— Windows LNK shortcut display
— Windows task scheduler

* Flame (2010-12): same print spooler and LNK overflows
as Stuxnet

— Targeted cyperespionage virus
* Still ubiquitous, especially in embedded systems

10/5/16 CSE 484 | CSE M 584 - Fall 2016 16

Attacks on Memory Buffers

* Bufferis a pre-defined data storage area inside
computer memory (stack or heap)

* Typical situation:

— A function takes some input that it writes into a pre-
allocated buffer.

— The developer forgets to check that the size of the input
isn’t larger than the size of the buffer.

— Uh oh.

* “Normal” bad input: crash
* “Adversarial” bad input : take control of execution

10/5/16 CSE 484 | CSE M 584 - Fall 2016 17

Stack Buffers

buf uh oh!

* Suppose Web server contains this function

void func(char *str) {
char buf[126];

strcpy (buf,str) ;

}
* No bounds checking on strcpy()

* If strislonger than 126 bytes

— Program may crash
— Attacker may change program behavior

10/5/16 CSE 484 | CSE M 584 - Fall 2016 18

Answer Q2

buf uh oh!

* Suppose Web server contains this function

void func(char *str) {
char buf[126];

strcpy (buf,str) ;

}
* No bounds checking on strcpy()

* If strislonger than 126 bytes

— Program may crash
— Attacker may change program behavior

10/5/16 CSE 484 | CSE M 584 - Fall 2016 19

Example: Changing Flags

buf 1 () !)

e authenticated variable

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Example: Changing Flags

buf 1 () !)

e authenticated variable

 Morris worm also overflowed a
buffer to overwrite an
authenticated flag in fingerd

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Memory Layout

* Textregion: Executable code of the program
* Heap: Dynamically allocated data

e Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Iop Bottom

Addr 0x00...0 Addr OxFF..F

10/5/16 CSE 484 | CSE M 584 - Fall 2016 22

Redirecting Program Flow

* Instead of “normal” string, attacker
sends 2 things as input:

—Assembly code she wants to execute

—The address where she expects that
code to appear

Redirecting Program Flow

* Instead of “normal” string, attacker
sends 2 things as input: Shellcode”

—Assembly code she wants to execute

—The address where she expects that
code to appear

Stack Buffers

e Suppose Web server contains this function:

void func(char *str) { Allocate local buffer
char buf[126]; (126 bytes reserved on stack)

strcpy (buf, str) ; % Copy argument into local buffer

}

 When this function is invoked, a new frame
(activation record) is pushed onto the stack.

| }
buf Saved FP‘ret/IP‘ str -

Local variables | Args Addr OxFF..F

Execute code at this address after func() finishes

10/5/16 CSE 484 | CSE M 584 - Fall 2016 25

What if Buffer is Overstuffed?

* Memory pointed to by stris copied onto stack...

void func(char *str) {

char buf[126]; strcpy does NOT check whether the string
strcpy (buf,str) ; at *str contains fewer than 126 characters

}

* If a string longer than 126 bytes is copied into
bufter, it will overwrite adjacent stack locations.

This will be interpreted as return address!

\ J

Y
Local variables

Atgs Addr OxFF..F

10/5/16 CSE 484 | CSE M 584 - Fall 2016 26

What if Buffer is Overstuffed?

* What if the string is read in from an
attacker on the network?

This will be interpreted as return address!

\ J

Y
Local variables

Atgs Addr OxFF..F

10/5/16 CSE 484 | CSE M 584 - Fall 2016 27

What if Buffer is Overstuffed?

exec(“/bin/sh”) asdf..asdf OxXxFFFFFFA2

This will be interpreted as return address!

< o~ > _—
- Local variables

10/5/16 CSE 484 | CSE M 584 - Fall 2016 28

Atgs Addr OxFF..F

Executing Attack Code

Addr OxFF..F
N
Attacker puts actual assembly In the overflow, a pointer back into the
instructions into his input string, e.g., buffer appears in the location where the
binary code of execve(‘““/bin/sh’”) system expects to find return address

 When function exits, code in the buffer will be
executed, giving attacker a shell

— Root shell if the victim program is setuid root
10/5/16 CSE 484 | CSE M 584 - Fall 2016 29

Stretch Break

Addr OxFF..F
N
Attacker puts actual assembly In the overflow, a pointer back into the
instructions into his input string, e.g., buffer appears in the location where the
binary code of execve(‘““/bin/sh’”) system expects to find return address

 When function exits, code in the buffer will be
executed, giving attacker a shell

— Root shell if the victim program is setuid root
10/5/16 CSE 484 | CSE M 584 - Fall 2016 30

Buffer Overflows can be Hard

* Overflow portion of the buffer must contain
correct address of attack code in the RET
position

— The value in the RET position must point to the

beginning of attack assembly code in the buffer

 Otherwise application will (probably) crash with
segmentation violation

— Attacker must correctly guess in which stack
position his/her buffer will be when the function is
called

10/5/16 CSE 484 | CSE M 584 - Fall 2016 31

Problem: No Bounds Checking

* strcpy does not check input size

— strcpy(buf, str) simply copies memory contents into buf
starting from *str until “\0” is encountered, ignoring the
size of area allocated to buf

* Many Clibrary functions are unsafe
— strcpy(char *dest, const char *src)
— strcat(char *dest, const char *sr¢)
— gets(char *s)
— scanf(const char *format, ...)
— printf(const char *format, ...)

10/5/16 CSE 484 | CSE M 584 - Fall 2016 32

Does Bounds Checking Help?

* strncpy(char *dest, const char *src, size t n)

— If strncpy is used instead of strcpy, no more than n characters will
be copied from *src to *dest

* Programmer has to supply the right value of n

* Potential overflow in htpasswd.c (Apache 1.3):

strcpy (record,user) ;
L

strcat(record,”:”); (“record”), then appends “:” and
strcat (record, cpw) ; hashed password (“cpw’’)

__J Copies username (“user”) into buffer

 Published fix:

10/5/16

strncpy (record,user, MAX STRING LEN-1) ;
strcat (record,”:”)
strncat (record,cpw,MAX STRING LEN-1);

CSE 484 | CSE M 584 - Fall 2016

33

Answer Q3

 strncpy(char *dest, const char *src, size tn)

— If strncpy is used instead of strcpy, no more than n characters will
be copied from *src to *dest

* Programmer has to supply the right value of n

* Potential overflow in htpasswd.c (Apache 1.3):

strcpy (record,user) ;

strcat (record,”:”) ;

strcat (record, cpw) ;

L

__J Copies username (“user”) into buffer

€6,

(“record”), then appends ‘“:” and

hashed password (“cpw”)

 Published fix:

10/5/16

strcat (record,”:”)

strncpy (record,user, MAX STRING LEN-1) ;

strncat (record,cpw,MAX STRING LEN-1);

CSE 484 | CSE M 584 - Fall 2016

34

Misuse of strncpy in htpasswd “Fix”’

* Published “fx’ for Apache htpasswd overflow:
strncpy (record,user, MAX STRING LEN-1) ;
strcat (record,”:"”)

strncat (record, cpw,MAX STRING LEN-1);

MAX_STRING_LEN bytes allocated for record buffer

P

~ N
1
contents of *user 0 contents of *cpw
e A NG
— |Pm“w :
Put up to MAX_STRING_LEN-1 Again put up to MAX_STRING_LEN-1

characters into buffer

characters into buffer

10/5/16 CSE 484 | CSE M 584 - Fall 2016 35

What About This?

* Home-brewed range-checking string copy

void mycopy (char *input) ({
char buffer[512]; int 1i;

for (i=0; i<=512; i++)
buffer[i] = input[i];
}
void main(int argc, char *argv[]) {
if (argc==2)
mycopy (argv[1l]) ;

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Off-By-One Overflow

* Home-brewed range-checking string copy

void mycopy (char *input) ({

char buffer([512]; int i; This will copy 513
characters into
for (i=0; @12; i++) buffer. Oops!
buffer[i1] = input[i];

}
void main(int argc, char *argv[]) {
if (argc==2)
mycopy (argv[1l]) ;

}
* 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame

— On little-endian architecture, make it point into buffer
— RET for previous function will be read from buffer!

10/5/16 CSE 484 | CSE M 584 - Fall 2016 37

Frame Pointer Overflow

Fake FP | Fake RET

ATTACK

" CODE

v

ed FP‘ret/IP‘ str -

Y
Local variables

10/5/16 CSE 484 | CSE M 584 - Fall 2016

Args Addr OxFF..F

38

Another Variant:
Function Pointer Overflow
* Cuses function pointers for callbacks: if

pointer to F is stored in memory location P,
then another function G can call F as (*P)(...)

Buffer with attacker-supplied Callback
input string pointer
~ — Y4 A N\
Heap attack code overflow

l

Legitimate function F

(elsewhere in memory)

10/5/16 CSE 484 | CSE M 584 - Fall 2016 39

Other Overflow Targets

* Format stringsin C
— More details next time

* Heap management structures used by
malloc()
— More details in section

* These are all attacks you can look forward to
in Lab #1 ©

10/5/16 CSE 484 | CSE M 584 - Fall 2016 40

Looking Forward

* Ethics form due at 5!
* Homework #1 due Monday, Oct 10

* Next few classes:
— Friday: guest lecture by David Aucsmith
— Monday: more buffer overflows
— Wednesday: guest lecture by Emily McReynolds

e Section tomorrow about Lab 1

10/5/16 CSE 484 | CSE M 584 - Fall 2016 41

