
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	
	

Software	Security:		
Buffer	Overflow	Attacks	

Fall	2016	
	

Adam	(Ada)	Lerner	
lerner@cs.washington.edu	

Thanks	to	Franzi	Roesner,	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	
Manferdelli,	John	Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	
slides	and	materials	...	

Announcements	

•  Sign	the	ethics	form	by	today	at	5!	
	
•  Homework	1	is	due	on	Monday.	

•  Please	start	forming	groups	for	lab	1	
– You	can	use	the	forum	to	find	group	members	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 2	

Announcements	

•  TA	office	hours	have	been	moved	to	
Mondays	at	4:30	(after	class),	in	the	
second	floor	breakout.		
– Sorry	for	the	confusion!		

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 3	

Security:	Not	Just	for	PCs	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 4	

smartphones	

wearables	

game	platforms	

cars	

medical	devices	
EEG	headsets	voting	machines	

RFID	 mobile	sensing	
platforms	

airplanes	

Software	Problems	are	Ubiquitous	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	

Software	Problems	are	Ubiquitous	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	

Software	Problems	are	Ubiquitous	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 7	

Software	Problems	are	Ubiquitous	

•  Other	serious	bugs	(many	others	exist)	
– US	Vincennes	tracking	software	
– MV-22	Osprey		

– Medtronic	Model	8870	Software	Application	Card	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 8	

Adversarial	Failures	

•  Software	bugs	are	bad	
–  Consequences	can	be	serious	

•  Even	worse	when	an	intelligent	adversary	
wishes	to	exploit	them!	
–  Intelligent	adversaries:		Force	bugs	into	“worst	
possible”	conditions/states	

–  Intelligent	adversaries:		Pick	their	targets	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 9	

BUFFER	OVERFLOWS	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 10	

Adversarial	Failures	

•  Buffer	overflows	bugs:		Big	class	of	bugs	
– Normal	conditions:		Can	sometimes	cause	systems	
to	fail	

– Adversarial	conditions:		Attacker	able	to	violate	
security	of	your	system	(control,	obtain	private	
information,	...)	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 11	

Reference	for	Q1	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 12	

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute	code	at	this	address	after	func()	finishes	

buf

Local	variables	

str

Args	

A	Bit	of	History:	Morris	Worm	

•  Worm	was	released	in	1988	by	Robert	Morris	
–  Graduate	student	at	Cornell,	son	of	NSA	chief	scientist	
–  Convicted	under	Computer	Fraud	and	Abuse	Act,	

sentenced	to	3	years	of	probation	and	400	hours	of	
community	service	

–  Now	an	EECS	professor	at	MIT	
•  Worm	was	intended	to	propagate	slowly	and	

harmlessly	measure	the	size	of	the	Internet	
•  Due	to	a	coding	error,	it	created	new	copies	as	fast	

as	it	could	and	overloaded	infected	machines	
•  $10-100M	worth	of	damage	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 13	

Morris	Worm	and	Buffer	Overflow	

•  One	of	the	worm’s	propagation	techniques	was	a	
buffer	overflow	attack	against	a	vulnerable	version	
of	fingerd	on	VAX	systems	
–  By	sending	special	string	to	finger	daemon,	worm	

caused	it	to	execute	code	creating	a	new	worm	copy	
–  Unable	to	determine	remote	OS	version,	worm	also	

attacked	fingerd	on	Suns	running	BSD,	causing	them	
to	crash	(instead	of	spawning	a	new	copy)	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 14	

Famous	Internet	Worms	

•  Buffer	overflows:	very	common	cause	of	Internet	attacks	
–  In	1998,	over	50%	of	advisories	published	by	CERT	(computer	

security	incident	report	team)	were	caused	by	buffer	overflows	

•  Morris	worm	(1988):	overflow	in	fingerd	
–  6,000	machines	infected	

•  CodeRed	(2001):	overflow	in	MS-IIS	server	
–  300,000	machines	infected	in	14	hours	

•  SQL	Slammer	(2003):	overflow	in	MS-SQL	server	
–  75,000	machines	infected	in	10	minutes	(!!)	

•  Sasser	(2005):	overflow	in	Windows	LSASS	
–  Around	500,000	machines	infected	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 15	

…	And	More	

•  Conficker	(2008-08):	overflow	in	Windows	RPC	
–  Around	10	million	machines	infected	(estimates	vary)	

•  Stuxnet	(2009-10):	several	zero-day	overflows	+	same	
Windows	RPC	overflow	as	Conficker	
–  Windows	print	spooler	service	
–  Windows	LNK	shortcut	display	
–  Windows	task	scheduler	

•  Flame	(2010-12):	same	print	spooler	and	LNK	overflows	
as	Stuxnet	
–  Targeted	cyperespionage	virus	

•  Still	ubiquitous,	especially	in	embedded	systems	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 16	

Attacks	on	Memory	Buffers	

•  Buffer	is	a	pre-defined	data	storage	area	inside	
computer	memory	(stack	or	heap)	

•  Typical	situation:	
–  A	function	takes	some	input	that	it	writes	into	a	pre-

allocated	buffer.	
–  The	developer	forgets	to	check	that	the	size	of	the	input	

isn’t	larger	than	the	size	of	the	buffer.	
–  Uh	oh.	

•  “Normal”	bad	input:	crash	
•  “Adversarial”	bad	input	:	take	control	of	execution	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	

Stack	Buffers	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 18	

•  Suppose	Web	server	contains	this	function	
	 void func(char *str) {

 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

•  No	bounds	checking	on	strcpy()	
•  If	str	is	longer	than	126	bytes	
–  Program	may	crash	
–  Attacker	may	change	program	behavior	

buf uh oh!

Answer	Q2	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 19	

•  Suppose	Web	server	contains	this	function	
	 void func(char *str) {

 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

•  No	bounds	checking	on	strcpy()	
•  If	str	is	longer	than	126	bytes	
–  Program	may	crash	
–  Attacker	may	change	program	behavior	

buf uh oh!

Example:	Changing	Flags	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	

• authenticated variable	

buf authenticated11 (:-) !)

Example:	Changing	Flags	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 21	

•  authenticated variable	

• Morris	worm	also	overflowed	a	
buffer	to	overwrite	an	
authenticated	flag	in	fingerd	

buf authenticated11 (:-) !)

Memory	Layout	

•  Text	region:		Executable	code	of	the	program	
•  Heap:		Dynamically	allocated	data	
•  Stack:		Local	variables,	function	return	addresses;	

grows	and	shrinks	as	functions	are	called	and	
return	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 22	

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

Redirecting	Program	Flow	

•  Instead	of	“normal”	string,	attacker	
sends	2	things	as	input:	
– Assembly	code	she	wants	to	execute	
– The	address	where	she	expects	that	
code	to	appear	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 23	

Redirecting	Program	Flow	

•  Instead	of	“normal”	string,	attacker	
sends	2	things	as	input:	
– Assembly	code	she	wants	to	execute	
– The	address	where	she	expects	that	
code	to	appear	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 24	

“Shellcode”	

Stack	Buffers	

•  Suppose	Web	server	contains	this	func3on:	
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

•  When	this	func3on	is	invoked,	a	new	frame	
(ac3va3on	record)	is	pushed	onto	the	stack.	

	

Allocate	local	buffer	
(126	bytes	reserved	on	stack)	

Copy	argument	into	local	buffer	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute	code	at	this	address	after	func()	finishes	

buf

Local	variables	

str

Args	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 25	

What	if	Buffer	is	Overstuffed?	

•  Memory	pointed	to	by	str	is	copied	onto	stack…	
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

•  If	a	string	longer	than	126	bytes	is	copied	into	
buffer,	it	will	overwrite	adjacent	stack	locations.	

	

strcpy	does	NOT	check	whether	the	string		
at	*str	contains	fewer	than	126	characters	

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 26	

What	if	Buffer	is	Overstuffed?	

• What	if	the	string	is	read	in	from	an	
attacker	on	the	network?		

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 27	

What	if	Buffer	is	Overstuffed?	

exec(“/bin/sh”) asdf…asdf 0xFFFFFFA2

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 28	

Executing	Attack	Code	

	

	

	

•  When	func3on	exits,	code	in	the	buffer	will	be		
				executed,	giving	aAacker	a	shell	
–  Root	shell	if	the	vic3m	program	is	setuid	root	

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker	puts	actual	assembly	
instructions	into	his	input	string,	e.g.,	
binary	code	of	execve(“/bin/sh”)	

exec(“/bin/sh”)

In	the	overflow,	a	pointer	back	into	the	
buffer	appears	in	the	location	where	the	
system	expects	to	find	return	address	

Caller’s framestr

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 29	

Stretch	Break	

	

	

	

•  When	func3on	exits,	code	in	the	buffer	will	be		
				executed,	giving	aAacker	a	shell	
–  Root	shell	if	the	vic3m	program	is	setuid	root	

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker	puts	actual	assembly	
instructions	into	his	input	string,	e.g.,	
binary	code	of	execve(“/bin/sh”)	

exec(“/bin/sh”)

In	the	overflow,	a	pointer	back	into	the	
buffer	appears	in	the	location	where	the	
system	expects	to	find	return	address	

Caller’s framestr

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 30	

Buffer	Overflows	can	be	Hard	

•  Overflow	portion	of	the	buffer	must	contain	
correct	address	of	attack	code	in	the	RET	
position	
–  The	value	in	the	RET	position	must	point	to	the	
beginning	of	attack	assembly	code	in	the	buffer	
•  Otherwise	application	will	(probably)	crash	with	
segmentation	violation	

– Attacker	must	correctly	guess	in	which	stack	
position	his/her	buffer	will	be	when	the	function	is	
called	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 31	

Problem:	No	Bounds	Checking	

•  strcpy	does	not	check	input	size	
–  strcpy(buf,	str)	simply	copies	memory	contents	into	buf	

starting	from	*str	until	“\0”	is	encountered,	ignoring	the	
size	of	area	allocated	to	buf	

•  Many	C	library	functions	are	unsafe	
–  strcpy(char	*dest,	const	char	*src)	
–  strcat(char	*dest,	const	char	*src)	
–  gets(char	*s)	
–  scanf(const	char	*format,	…)	
–  printf(const	char	*format,	…)		

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 32	

•  strncpy(char	*dest,	const	char	*src,	size_t	n)	
–  If	strncpy	is	used	instead	of	strcpy,	no	more	than	n	characters	will	

be	copied	from	*src	to	*dest	
•  Programmer	has	to	supply	the	right	value	of	n	

•  Potential	overflow	in	htpasswd.c	(Apache	1.3):	
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

•  Published	fix:	
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

Does	Bounds	Checking	Help?	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 33	

Copies	username	(“user”)	into	buffer	
(“record”),	then	appends	“:”	and	
hashed	password	(“cpw”)	

•  strncpy(char	*dest,	const	char	*src,	size_t	n)	
–  If	strncpy	is	used	instead	of	strcpy,	no	more	than	n	characters	will	

be	copied	from	*src	to	*dest	
•  Programmer	has	to	supply	the	right	value	of	n	

•  Potential	overflow	in	htpasswd.c	(Apache	1.3):	
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

•  Published	fix:	
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

Answer	Q3	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 34	

Copies	username	(“user”)	into	buffer	
(“record”),	then	appends	“:”	and	
hashed	password	(“cpw”)	

Misuse	of	strncpy	in	htpasswd	“Fix”	

•  Published	“fix”	for	Apache	htpasswd	overflow:	
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 35	

MAX_STRING_LEN	bytes	allocated	for	record	buffer	

contents	of	*user	

Put	up	to	MAX_STRING_LEN-1	
characters	into	buffer	

:

Put	“:”	

contents	of	*cpw	

Again	put	up	to	MAX_STRING_LEN-1	
characters	into	buffer	

What	About	This?	

•  Home-brewed	range-checking	string	copy	

 void mycopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 mycopy(argv[1]);
 }

•  1-byte	overflow:	can’t	change	RET,	but	can	change	
pointer	to	previous	stack	frame	
–  On	little-endian	architecture,	make	it	point	into	buffer	
–  RET	for	previous	function	will	be	read	from	buffer!	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

Off-By-One	Overflow	

•  Home-brewed	range-checking	string	copy	

 void mycopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 mycopy(argv[1]);
 }

•  1-byte	overflow:	can’t	change	RET,	but	can	change	
pointer	to	previous	stack	frame	
–  On	little-endian	architecture,	make	it	point	into	buffer	
–  RET	for	previous	function	will	be	read	from	buffer!	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 37	

This	will	copy	513	
characters	into	
buffer.	Oops!	

Frame	Pointer	Overflow	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	

Fake RETFake FP
ATTACK	
CODE	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 38	

Another	Variant:	
Function	Pointer	Overflow	

•  C	uses	function	pointers	for	callbacks:	if	
pointer	to	F	is	stored	in	memory	location	P,	
then	another	function	G	can	call	F	as	(*P)(…)	

	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

attack	code	

Buffer	with	attacker-supplied		
input	string	

Callback	
pointer	

Heap	

Legitimate	function	F	

overflow	

(elsewhere	in	memory)	

Other	Overflow	Targets	

•  Format	strings	in	C		
– More	details	next	time	

•  Heap	management	structures	used	by	
malloc()		
– More	details	in	section	

•  These	are	all	attacks	you	can	look	forward	to	
in	Lab	#1	J	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	

Looking	Forward	

•  Ethics	form	due	at	5!	
•  Homework	#1	due	Monday,	Oct	10	
•  Next	few	classes:	
– Friday:	guest	lecture	by	David	Aucsmith	
– Monday:	more	buffer	overflows	
– Wednesday:	guest	lecture	by	Emily	McReynolds	

•  Section	tomorrow	about	Lab	1	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	

