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Announcements	

•  Sign	the	ethics	form	by	today	at	5!	
	
•  Homework	1	is	due	on	Monday.	

•  Please	start	forming	groups	for	lab	1	
– You	can	use	the	forum	to	find	group	members	
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Announcements	

•  TA	office	hours	have	been	moved	to	
Mondays	at	4:30	(after	class),	in	the	
second	floor	breakout.		
– Sorry	for	the	confusion!		
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Security:	Not	Just	for	PCs	
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smartphones	

wearables	

game	platforms	

cars	

medical	devices	
EEG	headsets	voting	machines	

RFID	 mobile	sensing	
platforms	

airplanes	



Software	Problems	are	Ubiquitous	
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Software	Problems	are	Ubiquitous	

•  Other	serious	bugs	(many	others	exist)	
– US	Vincennes	tracking	software	
– MV-22	Osprey		

– Medtronic	Model	8870	Software	Application	Card	
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Adversarial	Failures	

•  Software	bugs	are	bad	
–  Consequences	can	be	serious	

•  Even	worse	when	an	intelligent	adversary	
wishes	to	exploit	them!	
–  Intelligent	adversaries:		Force	bugs	into	“worst	
possible”	conditions/states	

–  Intelligent	adversaries:		Pick	their	targets	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 9	



BUFFER	OVERFLOWS	
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Adversarial	Failures	

•  Buffer	overflows	bugs:		Big	class	of	bugs	
– Normal	conditions:		Can	sometimes	cause	systems	
to	fail	

– Adversarial	conditions:		Attacker	able	to	violate	
security	of	your	system	(control,	obtain	private	
information,	...)	
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Reference	for	Q1	
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Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute	code	at	this	address	after	func()	finishes	

buf

Local	variables	

str

Args	



A	Bit	of	History:	Morris	Worm	

•  Worm	was	released	in	1988	by	Robert	Morris	
–  Graduate	student	at	Cornell,	son	of	NSA	chief	scientist	
–  Convicted	under	Computer	Fraud	and	Abuse	Act,	

sentenced	to	3	years	of	probation	and	400	hours	of	
community	service	

–  Now	an	EECS	professor	at	MIT	
•  Worm	was	intended	to	propagate	slowly	and	

harmlessly	measure	the	size	of	the	Internet	
•  Due	to	a	coding	error,	it	created	new	copies	as	fast	

as	it	could	and	overloaded	infected	machines	
•  $10-100M	worth	of	damage	
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Morris	Worm	and	Buffer	Overflow	

•  One	of	the	worm’s	propagation	techniques	was	a	
buffer	overflow	attack	against	a	vulnerable	version	
of	fingerd	on	VAX	systems	
–  By	sending	special	string	to	finger	daemon,	worm	

caused	it	to	execute	code	creating	a	new	worm	copy	
–  Unable	to	determine	remote	OS	version,	worm	also	

attacked	fingerd	on	Suns	running	BSD,	causing	them	
to	crash	(instead	of	spawning	a	new	copy)	
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Famous	Internet	Worms	

•  Buffer	overflows:	very	common	cause	of	Internet	attacks	
–  In	1998,	over	50%	of	advisories	published	by	CERT	(computer	

security	incident	report	team)	were	caused	by	buffer	overflows	

•  Morris	worm	(1988):	overflow	in	fingerd	
–  6,000	machines	infected	

•  CodeRed	(2001):	overflow	in	MS-IIS	server	
–  300,000	machines	infected	in	14	hours	

•  SQL	Slammer	(2003):	overflow	in	MS-SQL	server	
–  75,000	machines	infected	in	10	minutes	(!!)	

•  Sasser	(2005):	overflow	in	Windows	LSASS	
–  Around	500,000	machines	infected	
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…	And	More	

•  Conficker	(2008-08):	overflow	in	Windows	RPC	
–  Around	10	million	machines	infected	(estimates	vary)	

•  Stuxnet	(2009-10):	several	zero-day	overflows	+	same	
Windows	RPC	overflow	as	Conficker	
–  Windows	print	spooler	service	
–  Windows	LNK	shortcut	display	
–  Windows	task	scheduler	

•  Flame	(2010-12):	same	print	spooler	and	LNK	overflows	
as	Stuxnet	
–  Targeted	cyperespionage	virus	

•  Still	ubiquitous,	especially	in	embedded	systems	
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Attacks	on	Memory	Buffers	

•  Buffer	is	a	pre-defined	data	storage	area	inside	
computer	memory	(stack	or	heap)	

•  Typical	situation:	
–  A	function	takes	some	input	that	it	writes	into	a	pre-

allocated	buffer.	
–  The	developer	forgets	to	check	that	the	size	of	the	input	

isn’t	larger	than	the	size	of	the	buffer.	
–  Uh	oh.	

•  “Normal”	bad	input:	crash	
•  “Adversarial”	bad	input	:	take	control	of	execution	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	



Stack	Buffers	
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•  Suppose	Web	server	contains	this	function	
	 void func(char *str) { 

           char buf[126]; 
           ... 
           strcpy(buf,str); 
           ... 
      } 

•  No	bounds	checking	on	strcpy()	
•  If	str	is	longer	than	126	bytes	
–  Program	may	crash	
–  Attacker	may	change	program	behavior	

buf uh oh!



Answer	Q2	
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Example:	Changing	Flags	
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• authenticated variable	

buf authenticated11 ( :-) ! )



Example:	Changing	Flags	
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•  authenticated variable	

• Morris	worm	also	overflowed	a	
buffer	to	overwrite	an	
authenticated	flag	in	fingerd	

buf authenticated11 ( :-) ! )



Memory	Layout	

•  Text	region:		Executable	code	of	the	program	
•  Heap:		Dynamically	allocated	data	
•  Stack:		Local	variables,	function	return	addresses;	

grows	and	shrinks	as	functions	are	called	and	
return	
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Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



Redirecting	Program	Flow	

•  Instead	of	“normal”	string,	attacker	
sends	2	things	as	input:	
– Assembly	code	she	wants	to	execute	
– The	address	where	she	expects	that	
code	to	appear	
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“Shellcode”	



Stack	Buffers	

•  Suppose	Web	server	contains	this	func3on:	
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

•  When	this	func3on	is	invoked,	a	new	frame	
(ac3va3on	record)	is	pushed	onto	the	stack.	

	

Allocate	local	buffer	
(126	bytes	reserved	on	stack)	

Copy	argument	into	local	buffer	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute	code	at	this	address	after	func()	finishes	

buf

Local	variables	

str

Args	
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What	if	Buffer	is	Overstuffed?	

•  Memory	pointed	to	by	str	is	copied	onto	stack…	
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

•  If	a	string	longer	than	126	bytes	is	copied	into	
buffer,	it	will	overwrite	adjacent	stack	locations.	

	

strcpy	does	NOT	check	whether	the	string		
at	*str	contains	fewer	than	126	characters	

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	
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What	if	Buffer	is	Overstuffed?	

• What	if	the	string	is	read	in	from	an	
attacker	on	the	network?		

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	
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What	if	Buffer	is	Overstuffed?	

 
 
exec(“/bin/sh”) asdf…asdf 0xFFFFFFA2 

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	
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Executing	Attack	Code	

	

	

	

•  When	func3on	exits,	code	in	the	buffer	will	be		
				executed,	giving	aAacker	a	shell	
–  Root	shell	if	the	vic3m	program	is	setuid	root	

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker	puts	actual	assembly	
instructions	into	his	input	string,	e.g.,	
binary	code	of	execve(“/bin/sh”)	

exec(“/bin/sh”)

In	the	overflow,	a	pointer	back	into	the	
buffer	appears	in	the	location	where	the	
system	expects	to	find	return	address	

Caller’s framestr
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Stretch	Break	

	

	

	

•  When	func3on	exits,	code	in	the	buffer	will	be		
				executed,	giving	aAacker	a	shell	
–  Root	shell	if	the	vic3m	program	is	setuid	root	

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker	puts	actual	assembly	
instructions	into	his	input	string,	e.g.,	
binary	code	of	execve(“/bin/sh”)	

exec(“/bin/sh”)

In	the	overflow,	a	pointer	back	into	the	
buffer	appears	in	the	location	where	the	
system	expects	to	find	return	address	

Caller’s framestr
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Buffer	Overflows	can	be	Hard	

•  Overflow	portion	of	the	buffer	must	contain	
correct	address	of	attack	code	in	the	RET	
position	
–  The	value	in	the	RET	position	must	point	to	the	
beginning	of	attack	assembly	code	in	the	buffer	
•  Otherwise	application	will	(probably)	crash	with	
segmentation	violation	

– Attacker	must	correctly	guess	in	which	stack	
position	his/her	buffer	will	be	when	the	function	is	
called	
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Problem:	No	Bounds	Checking	

•  strcpy	does	not	check	input	size	
–  strcpy(buf,	str)	simply	copies	memory	contents	into	buf	

starting	from	*str	until	“\0”	is	encountered,	ignoring	the	
size	of	area	allocated	to	buf	

•  Many	C	library	functions	are	unsafe	
–  strcpy(char	*dest,	const	char	*src)	
–  strcat(char	*dest,	const	char	*src)	
–  gets(char	*s)	
–  scanf(const	char	*format,	…)	
–  printf(const	char	*format,	…)		
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•  strncpy(char	*dest,	const	char	*src,	size_t	n)	
–  If	strncpy	is	used	instead	of	strcpy,	no	more	than	n	characters	will	

be	copied	from	*src	to	*dest	
•  Programmer	has	to	supply	the	right	value	of	n	

•  Potential	overflow	in	htpasswd.c	(Apache	1.3):	
strcpy(record,user); 
strcat(record,”:”); 
strcat(record,cpw); 

•  Published	fix:	
strncpy(record,user,MAX_STRING_LEN-1); 
strcat(record,”:”)    
strncat(record,cpw,MAX_STRING_LEN-1); 

Does	Bounds	Checking	Help?	
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Copies	username	(“user”)	into	buffer	
(“record”),	then	appends	“:”	and	
hashed	password	(“cpw”)	



•  strncpy(char	*dest,	const	char	*src,	size_t	n)	
–  If	strncpy	is	used	instead	of	strcpy,	no	more	than	n	characters	will	

be	copied	from	*src	to	*dest	
•  Programmer	has	to	supply	the	right	value	of	n	

•  Potential	overflow	in	htpasswd.c	(Apache	1.3):	
strcpy(record,user); 
strcat(record,”:”); 
strcat(record,cpw); 

•  Published	fix:	
strncpy(record,user,MAX_STRING_LEN-1); 
strcat(record,”:”)    
strncat(record,cpw,MAX_STRING_LEN-1); 

Answer	Q3	
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Copies	username	(“user”)	into	buffer	
(“record”),	then	appends	“:”	and	
hashed	password	(“cpw”)	



Misuse	of	strncpy	in	htpasswd	“Fix”	

•  Published	“fix”	for	Apache	htpasswd	overflow:	
strncpy(record,user,MAX_STRING_LEN-1); 
strcat(record,”:”)    
strncat(record,cpw,MAX_STRING_LEN-1);	
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MAX_STRING_LEN	bytes	allocated	for	record	buffer	

contents	of	*user	

Put	up	to	MAX_STRING_LEN-1	
characters	into	buffer	

:

Put	“:”	

contents	of	*cpw	

Again	put	up	to	MAX_STRING_LEN-1	
characters	into	buffer	



What	About	This?	

•  Home-brewed	range-checking	string	copy	
      

     void mycopy(char *input) { 
              char buffer[512]; int i;  
 
             for (i=0; i<=512; i++) 
                 buffer[i] = input[i];  
        } 
        void main(int argc, char *argv[]) { 
             if (argc==2)  
                mycopy(argv[1]); 
        } 
 

•  1-byte	overflow:	can’t	change	RET,	but	can	change	
pointer	to	previous	stack	frame	
–  On	little-endian	architecture,	make	it	point	into	buffer	
–  RET	for	previous	function	will	be	read	from	buffer!	
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Off-By-One	Overflow	

•  Home-brewed	range-checking	string	copy	
      

     void mycopy(char *input) { 
              char buffer[512]; int i;  
 
             for (i=0; i<=512; i++) 
                 buffer[i] = input[i];  
        } 
        void main(int argc, char *argv[]) { 
             if (argc==2)  
                mycopy(argv[1]); 
        } 
 

•  1-byte	overflow:	can’t	change	RET,	but	can	change	
pointer	to	previous	stack	frame	
–  On	little-endian	architecture,	make	it	point	into	buffer	
–  RET	for	previous	function	will	be	read	from	buffer!	
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This	will	copy	513	
characters	into	
buffer.	Oops!	



Frame	Pointer	Overflow	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	

Fake RETFake FP
ATTACK	
CODE	
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Another	Variant:	
Function	Pointer	Overflow	

•  C	uses	function	pointers	for	callbacks:	if	
pointer	to	F	is	stored	in	memory	location	P,	
then	another	function	G	can	call	F	as	(*P)(…)	

	

10/5/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

attack	code	

Buffer	with	attacker-supplied		
input	string	

Callback	
pointer	

Heap	

Legitimate	function	F	

overflow	

(elsewhere	in	memory)	



Other	Overflow	Targets	

•  Format	strings	in	C		
– More	details	next	time	

•  Heap	management	structures	used	by	
malloc()		
– More	details	in	section	

•  These	are	all	attacks	you	can	look	forward	to	
in	Lab	#1	J	
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Looking	Forward	

•  Ethics	form	due	at	5!	
•  Homework	#1	due	Monday,	Oct	10	
•  Next	few	classes:	
– Friday:	guest	lecture	by	David	Aucsmith	
– Monday:	more	buffer	overflows	
– Wednesday:	guest	lecture	by	Emily	McReynolds	

•  Section	tomorrow	about	Lab	1	
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