
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Certificate	Authorities	and		

SSL/TLS/HTTPS	

Fall	2016	
	

Ada	(Adam)	Lerner	
lerner@cs.washington.edu	

Thanks	to	Franzi	Roesner,	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	
Manferdelli,	John	Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	
slides	and	materials	...	



Authenticity	of	Public	Keys	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 2	

?	

Problem:	How	does	Alice	know	that	the	public	key	
																			she	received	is	really	Bob’s	public	key?	

private	key	

Alice	
Bob	

public	key	



Announcements	

• Lab	2	(web	security)	will	be	
coming	out	next	Tuesday	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 3	



RSA	decryption	

•  Based	on	feedback	and	interest,	not	in	
lecture	

•  I’ve	added	a	slide	to	lecture	12’s	slides	which	
explains	it	(it’s	slide	18)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 4	



RSA	decryption	

• On	the	interest	scale	of	1-5…	
– ...	someone	answered	0		
– ...	someone	answered	6	
– …someone	answered	π	
– …someone	answered	25	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	



Security	mindset	anecdote	–		
Mining	Your	Ps	and	Qs	

•  A	2012	study	titled	
	
“Mining	your	Ps	and	Qs:	Detection	of	
Widespread	Weak	Keys	in	Network	Devices”	

	
Scanned	the	entire	internet	to	look	for	weak	
public	keys	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	



Mining	Your	Ps	and	Qs	

•  They	were	able	to	determine	the	RSA	
private	key	for	0.5%	of	HTTPS	servers	and	
0.03%	of	SSH	servers	

•  How?	Insufficient	randomness.	0.5%	of	keys	
shared	a	p	or	q	with	at	least	one	other	key	
(but	not	both).	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 7	



RSA	Cryptosystem	[Rivest,	Shamir,	Adleman	1977]	

•  Key	generation:	
–  Generate	random	large	primes	p,	q	

•  Say,	1024	bits	each	
–  Compute	n=pq	and	ϕ(n)=(p-1)(q-1)	
–  Choose	small	e,	relatively	prime	to	ϕ(n)	

•  Typically,	e=216+1=65537	
–  Compute	unique	d	such	that	ed	=	1	mod	ϕ(n)	

•  Modular	inverse:	d	=	e-1	mod	ϕ(n)	

–  Public	key	=	(e,n);		private	key	=	(d,n)	
•  Encryption	of	m:		c	=	me	mod	n	
•  Decryption	of	c:			cd	mod	n	=	(me)d	mod	n	=	m	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 8	



Certificates	

•  Public-key	certificate	
– Signed	statement	specifying	the	key	
and	identity	
• sigCA(“Bob”,	PKB)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 9	



Threat:	Man-In-The-Middle	(MITM)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 10	

Google.com	



You	encounter	this	every	day…	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 11	

SSL/TLS:	Encryption	&	authentication	for	connections	
	
(More	on	this	later!)	



Certificate	Authority	

•  Trusted	organization	that	verifies	who	owns	
what	keys	out	of	band	and	tells	everyone	
else	whose	keys	are	whose	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 12	



Strawman	CA	design	

1.  You	browse	to	www.cs.washington.edu	
2.  www.cs.washington.edu	sends	its	key	K	
3.  Your	browser	asks	a	trusted	CA:	“hey,	key	K	

the	right	key	for	UW	CSE?”	
4.  CA	replies	“yes”	or	“no”	

Why	is	this	a	bad	idea?	(Q1)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 13	



Real	CA	design	

•  Think	of	a	certificate	as		
a	cryptographically		
hard-to-forge	piece	of	ID	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 14	

Certificate	
authority	

(e.g.,	Verisign	
or	Let’s	
Encrypt)	

www.cs.washington.edu	

<proof	that	I’m	UWCSE	and	
PKUWCSE	is	my	key>	

sigCA(“UWCSE”,	PKUWCSE)	



Example	Certificate	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 15	



Example	Certificate	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 16	



X.509	Certificate	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	



Hierarchical	Approach	

•  Single	CA	certifying	every	public	key	is	
impractical	

•  Instead,	one	or	more	trusted	root	authorities	
–  Everybody	must	know	the	public	key	for	verifying	
root	authority’s	signatures	

•  CAs	delegate	to	other	authorities	
– What	happens	if	root	authority	is	ever	
compromised?	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 18	



Hierarchical	Approach	

•  Single	CA	certifying	every	public	key	is	impractical	
•  Instead,	use	a	trusted	root	authority	
–  For	example,	Verisign	
–  Everybody	must	know	the	public	key	for	verifying	root	

authority’s	signatures	
•  Root	authority	signs	certificates	for	lower-level	

authorities,	lower-level	authorities	sign	certificates	
for	individual	networks,	and	so	on	
–  Instead	of	a	single	certificate,	use	a	certificate	chain	

•  sigVerisign(“AnotherCA”,	PKAnotherCA),	sigAnotherCA(“Alice”,	PKA)	

– What	happens	if	root	authority	is	ever	compromised?	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 19	



Many	Challenges…		
	

•  CAs	make	serious	mistakes	
– Bad	security	practices,	bad	operational	practices	

•  Revocation	is	hard…	
•  Users	don’t	notice	when	attacks	happen	
– We’ll	talk	more	about	this	later	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	



Mining	Your	Ps	and	Qs	

•  Apache	ships	with	a	“snake-oil”	certificate	--
an	example	certificate	for	demonstrating	
how	to	set	up	HTTPS	

•  A	study	found	>85k	hosts	on	the	internet	
(0.66%	of	all	TLS	hosts	on	the	internet)	
actively	using	these	keys!	

•  22	hosts	had	certificates	using	these	keys	
THAT	WERE	SIGNED	BY	A	CA!	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 21	



11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 22	

Attacking	CAs	
	
Security	of	DigiNotar	
servers:	
•  All	core	certificate	

servers	controlled	by	
a	single	admin	
password	
(Pr0d@dm1n)	

•  Software	on	public-
facing	servers	out	of	
date,	unpatched	

•  No	anti-virus	(could	
have	detected	attack)	

	



Colliding	Certificates	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 23	

serial	number	

validity	period	

real	cert	
domain	name	

real	cert	
RSA	key	

X.509	extensions	

signature	
identical	bytes	

(copied	from	real	cert)	

collision	bits	
(computed)	

chosen	prefix	
(difference)	

serial	number	

validity	period	

rogue	cert	
domain	name	

???	

X.509	extensions	

signature	

set	by	
the	CA	

Hash	to	the	same	
MD5	value!	

Valid	for	both	certificates!	

[Sotirov	et	al.	“Rogue	Certificates”]	



Consequences	of	Hacking	a	CA		

•  Attacker	makes	themself	a	fake	certificate	for	a	site	
(say,	mail.yahoo.com):		
	 	 	fakeCert	=	sigCA(“Yahoo”,	<attacker’s	key>)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 24	



Q2:	Man-In-The-Middle	(MITM)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 25	

mail.yahoo.com	



Consequences	of	Hacking	a	CA		

•  Attacker	makes	themselves	a	fake	certificate	for	a	
site	(say,	mail.yahoo.com):		
	 	 	fakeCert	=	sigCA(“Yahoo”,	<attacker’s	key>)	

•  An	attacker	can	pretend	to	be	any	real	site	
–  For	example,	use	DNS	to	poison	the	mapping	of	

mail.yahoo.com	to	an	IP	address	

•  …	“authenticate”	as	the	real	site	
•  …	decrypt	all	data	sent	by	users	
–  Email,	phone	conversations,	Web	browsing	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 26	



More	Rogue	Certs	

•  In	Jan	2013,	a	rogue	*.google.com	certificate																	
was	issued	by	an	intermediate	CA	that	gained																		
its	authority	from	the	Turkish	root	CA	TurkTrust	
–  TurkTrust	accidentally	issued	intermediate	CA	certs		to	

customers	who	requested	regular	certificates	
–  Ankara	transit	authority	used	its	certificate	to	issue	a	fake	

*.google.com	certificate	in	order	to	filter	SSL	traffic	from	its	
network	

•  This	rogue	*.google.com	certificate	was	trusted	by	
every	browser	in	the	world	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 27	



Many	Challenges…		
	

•  CAs	make	serious	mistakes	
– Bad	security	practices,	bad	operational	practices	

•  Revocation	is	hard…	
•  Users	don’t	notice	when	attacks	happen	
– We’ll	talk	more	about	this	later	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 28	



Certificate	Revocation	(Q3)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 29	



Certificate	Revocation	

•  Revocation	is	very	important	
•  Many	valid	reasons	to	revoke	a	certificate	
–  Private	key	corresponding	to	the	certified	public	key	has	

been	compromised	
–  User	stopped	paying	their	certification	fee	to	this	CA	and	

CA	no	longer	wishes	to	certify	him	
–  CA’s	private	key	has	been	compromised!	

•  Expiration	is	a	form	of	revocation,	too	
– Many	deployed	systems	don’t	bother	with	revocation	
–  Re-issuance	of	certificates	is	a	big	revenue	source	for	

certificate	authorities	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 30	



Certificate	Revocation	Mechanisms	

•  Certificate	revocation	list	(CRL)	
–  CA	periodically	issues	a	signed	list	of	revoked	
certificates	
•  Credit	card	companies	used	to	issue	thick	books	of	
canceled	credit	card	numbers	

–  Can	issue	a	“delta	CRL”	containing	only	updates	
•  Online	revocation	service	
– When	a	certificate	is	presented,	recipient	goes	to	a	
special	online	service	to	verify	whether	it	is	still	valid	
•  Like	a	merchant	dialing	up	the	credit	card	processor	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 31	



Keybase	

•  Basic	idea:	
–  Rely	on	existing	trust	of	a	person’s	ownership	of	other	

accounts	(e.g.,	Twitter,	GitHub,	website)	
–  Each	user	publishes	signed	proofs	to	their	linked	account	

	

																																																																https://keybase.io/		

	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 32	



SSL/TLS	

•  Secure	Sockets	Layer	and	Transport	Layer	Security	
–  Same	protocol,	new	version	(TLS	is	current)	

•  De	facto	standard	for	Internet	security	
–  “The	primary	goal	of	the	TLS	protocol	is	to	provide	

privacy	and	data	integrity	between	two	communicating	
applications”	

•  Deployed	in	every	Web	browser;	also	VoIP,	
payment	systems,	distributed	systems,	etc.	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 33	



SSL/TLS	

•  TLS	is	typically	used	on		
top	of	a	TCP	connection	
	

	 	TLS	

•  Can	be	used	over	other		
transport	protocols	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 34	



TLS	Basics	

•  TLS	consists	of	two	protocols	
–  Familiar	pattern	for	key	exchange	protocols	

•  Handshake	protocol	
– Use	public-key	cryptography	to	establish	a	shared	
secret	key	between	the	client	and	the	server	

•  Record	protocol	
– Use	the	secret	symmetric	key	established	in	the	
handshake	protocol	to	protect	communication	
between	the	client	and	the	server	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 35	



Basic	Handshake	Protocol	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

C	

ClientHello	

S	

Client	announces	(in	plaintext):	
•  Protocol	version	it	is	running	
•  Cryptographic	algorithms	it	supports	
•  Fresh,	random	number	



Basic	Handshake	Protocol	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 37	

C	

C,	versionc,	suitesc,	Nc	

ServerHello	

S	
Server	responds	(in	plaintext)	with:	
•  Highest	protocol	version	supported	by	

both	the	client	and	the	server	
•  Strongest	cryptographic	suite	selected	

from	those	offered	by	the	client	
•  Fresh,	random	number	



Basic	Handshake	Protocol	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 38	

C	

versions,	suites,	Ns,	
ServerKeyExchange	

S	Server	sends	his	public-key	certificate	
containing	either	his	RSA,	or	
his	Diffie-Hellman	public	key		
(depending	on	chosen	crypto	suite)	

C,	versionc,	suitesc,	Nc	



Basic	Handshake	Protocol	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

ClientKeyExchange	

The	client	generates	secret	key	material	
and	sends	it	to	the	server	encrypted	with	
the	server’s	public	key	(if	using	RSA)	



Basic	Handshake	Protocol	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	

Record	of	all	sent	and		
received	handshake	messages	



“Core”	SSL	3.0	Handshake	(Not	TLS)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	

C	

versions=3.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	



Version	Rollback	Attack	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 42	

C	

Versions=2.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=2.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

C	and	S	end	up	communicating	using	SSL	2.0		
(weaker	earlier	version	of	the	protocol	that	

does	not	include	“Finished”	messages)	

Server	is	fooled	into	thinking	he	is	
communicating	with	a	client	who	
supports	only	SSL	2.0	



“Chosen-Protocol”	Attacks	

•  Why	do	people	release	new	versions	of	security	protocols?	
Because	the	old	version	got	broken!	

•  New	version	must	be	backward-compatible	
–  Not	everybody	upgrades	right	away	

•  Attacker	can	fool	someone	into	using	the	old,	broken	version	
and	exploit	known	vulnerability	
–  Similar:	fool	victim	into	using	weak	crypto	algorithms	

•  Defense	is	hard:	must	authenticate	version	in	early	designs	
•  Many	protocols	had	“version	rollback”	attacks	

–  SSL,	SSH,	GSM	(cell	phones)	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 43	



Version	Check	in	SSL	3.0	

11/2/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 44	

C	

versions=3.0,	suites,	Ns,	
certificate	for	PKs,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{versionc,	secretc}PKs	

C	and	S	share	
secret	key	material	secretc	at	this	point	

“Embed”	version	
number	into	secret	

Check	that	received	version	is	equal	
to	the	version	in	ClientHello		

switch	to	key	derived	
from	secretc,	Nc,	Ns	

switch	to	key	derived	
from	secretc,	Nc,	Ns	


