
1

Compression and explanation
using hierarchical grammars

Craig G. Nevill-Manning and Ian H. Witten
Computer Science Department, University of Waikato, New Zealand.

{ cgn, ihw} @cs.waikato.ac.nz
phone +64-7-838 4021, fax +64-7-838 4155

This paper describes an algorithm, called SEQUITUR, that identifies hierarchical structure in sequences of discrete
symbols and uses that information for compression. On many practical sequences it performs well at both
compression and structural inference, producing comprehensible descriptions of sequence structure in the form of
grammar rules. The algorithm can be stated concisely in the form of two constraints on a context-free grammar.
Inference is performed incrementally, the structure faithfully representing the input at all times. It can be
implemented efficiently and operates in time that is approximately linear in sequence length. Despite its simplicity
and efficiency, SEQUITUR succeeds in inferring a range of interesting hierarchical structures from naturally-
occurring sequences.

1 Introduction

Data compression is an eminently pragmatic pursuit:

by removing redundancy, storage can be utilised more

efficiently. Identifying redundancy also serves a less

prosaic purpose—it provides cues for detecting

structure. This paper describes an algorithm that excels

at both data compression and structural inference. This

algorithm is implemented in a system called SEQUITUR

that deals efficiently with sequences containing

millions of symbols.

SEQUITUR takes a sequence of discrete symbols and

produces a set of hierarchical rules that rewrite it as a

context-free grammar. Although we refer to it as a

‘grammar,’ the result involves no generalization: it is a

hierarchical structure that is capable of generating just

one string, namely the original sequence. For relatively

unstructured sequences such as natural language text,

the top-level rule is very long, perhaps 10-20% as long

as the original sequence, whereas all the other rules are

fairly short, with only two or three symbols each. This

is because the top-level rule contains the non-repetitive

residue from the sequence after all of the compressive

information has been factored out.

This technique performs well as a data compression

scheme. Because it detects and eliminates redundancy,

and represents structure hierarchically, it outperforms

other dictionary techniques and, on very large or highly

structured sequences, also outperforms standard

statistical techniques. However, the raw grammar is not

itself dramatically smaller than the original input, at

least for sequences such as natural language text. To

realize its latent compressive potential it is necessary to

encode the grammar in a fairly sophisticated manner.

The algorithm is technically interesting for four

reasons. First, it can be stated very concisely, in the

form of two constraints on a context-free grammar.

Second, it operates in time that is approximately linear

with the length of the sequence—a property that we

take for granted in compression algorithms but which

is rare in grammatical inference. Third, the concise

description of the algorithm permits a compact,

intuitively appealing, proof of its efficiency. Fourth,

2

inference is performed incrementally, so that the

structure faithfully reflects the original at all points

during processing.

Despite its simplicity and efficiency, SEQUITUR

succeeds in inferring a range of interesting hierarchical

structures from naturally-occurring sequences, and we

describe structural inference from sequences in three

different languages. The technique has also been

demonstrated to produce instructive explanations of

structure in computer programs and recursive

grammars, and to optimise graphical rendering.

Moreover, it is possible to use the system of rules as a

basis for generalization and thereby generate an even

more compact generalized grammar which can, for

semi-structured sequences, provide even better

explanation and compression. This work bears

similarity to Wolff’s (1980) MK10 system, but

SEQUITUR’s computational efficiency allows it to make

inferences from significantly longer sequences.

This paper proceeds as follows. We begin by

describing the algorithm in terms of the two constraints

that underlie it. Because of the dual objectives of the

SEQUITUR system—explanation and compression—we

evaluate it in two ways: qualitatively by examining the

structures that it infers from several sequences, and

quantitatively with respect to its compression

performance on a standard corpus and on several other

structured sequences. Finally, we describe an extended

case study of how the rules produced by SEQUITUR can

be generalized into a true grammar by detecting

discontiguous dependencies. This produces a more

compact structural description that can result in

extremely high compression performance. Nevill-

Manning (1996) contains more information about all

aspects of SEQUITUR and its application, and the

system itself can be used interactively at

http://www.cs.waikato.ac.nz/sequitur .

2 Forming a hierarchy of
repetitions

SEQUITUR produces a grammar based on repeated

phrases in the input sequence. Each repetition gives

rise to a rule in the grammar, and is replaced by a non-

terminal symbol, producing a more concise

representation of the sequence. It is the pursuit of

brevity that drives the algorithm to form and maintain

the grammar, and, as a by-product, provide a structural

explanation of the sequence.

For example, at the left of Figure 1a is a sequence that

contains the repeating string bc. Note that the sequence

is already a grammar—a trivial one with a single rule.

To compress the sequence, a new rule A → bc is

formed, and both occurrences of bc are replaced by A.

The new grammar is shown at the right of Figure 1a.

The sequence in Figure 1b shows how rules can be

reused in longer rules. It is formed by concatenating

two copies of the sequence in Figure 1a. Since it

represents an exact repetition, compression can be

achieved by forming the rule A → abcdbc to replace

both halves of the sequence. Further gains can be made

by forming rule B → bc to compress rule A. This

demonstrates the advantage of treating the sequence,

rule S, as part of the grammar—rules may be formed in

rule A in an analogous way to rules formed from rule S.

These rules within rules constitute the grammar’s

hierarchical structure.

The grammars in Figures 1a and 1b share two

properties:

p1: no pair of adjacent symbols appears more than

once in the grammar, and

p2: every rule is used more than once.

Property p1 can be restated as ‘every digram in the

grammar is unique,’ and will be referred to as digram

uniqueness. Property p2 ensures that a rule is useful, so

it will be called rule utility. These two constraints

exactly characterise the grammars that SEQUITUR

generates.

3

For example, the sequence in Figure 1a contains the

repeated digram bc. To conform to property p1, rule A

is created, so that bc occurs only within rule A. Every

digram in the sequence in Figure 1b appears elsewhere

in the sequence: the creation of rule A leaves only one

repetition, which is taken care of by rule B. Property p2

allows rules longer than two symbols to be formed, as

we will describe in Section 2.2. To show what happens

when these properties are violated, Figure 1c gives two

other grammars that represent the sequence in

Figure 1b, but lack one of the properties. The first

grammar contains two occurrences of bc, so p1 does

not hold. In this case, there is redundancy because bc

appears twice. In the second grammar, B is used only

once, so p2 does not hold. If B were removed, the

grammar would shrink by one rule and one symbol,

forming a more concise grammar.

SEQUITUR’s operation consists of ensuring that both

properties hold. When describing the algorithm, the

properties will be referred to as constraints. The

algorithm operates by enforcing the constraints on a

grammar: when the digram uniqueness constraint is

violated, a new rule is formed, and when the rule utility

constraint is violated, the useless rule is deleted. The

next two sections describe in detail how this is

performed.

2.1 Digram uniqueness

When a new symbol is observed, it is appended to rule

S. The last two symbols of rule S—the new symbol and

its predecessor—form a new digram. If this digram

occurs elsewhere in the grammar, the first constraint

has been violated. To remedy this, a new rule is formed

with the digram on the right-hand side, headed by a

new non-terminal. The two original digrams are

replaced by this non-terminal.

The algorithm operates incrementally, and in order to

illustrate this Figure 2 shows the grammar as new

symbols are added in the sequence abcdbcabcd. The

left-most column states the action that has been taken

to modify the grammar—either observing a new

symbol and appending it to rule S, or enforcing a

constraint. The next column shows the sequence

observed so far. The third column gives the grammar

created from the sequence. The fourth column lists any

duplicate digrams, and the final column lists any

underused rules.

When the final c is added in Figure 2a, the digram bc

appears twice. The new rule A is created, with bc as its

right-hand side. The two occurrences of bc are replaced

by A. This illustrates the basic procedure for dealing

with duplicate digrams.

The appearance of a duplicate digram does not always

result in a new rule. If the new digram matches the

right-hand side of a rule exactly, no new rule need be

created: the digram is replaced by the non-terminal that

heads the existing rule. Figure 2b demonstrates the

changes that occur in the grammar when a third bc

digram appears: the existing non-terminal A is

substituted for the third occurrence of bc. This results

in a new pair of repeating digrams, Aa, shown in the

last line of Figure 2b. In Figure 2c a new rule B is

formed accordingly, with aA as its right-hand side, and

the two occurrences of aA are replaced by B. The right-

hand side of this new rule not only contains terminals,

but also non-terminals referring to other rules.

The hierarchy is formed and maintained by an iterative

process: the substitution of A for bc resulted in the new

digram aA, which was itself replaced by B. For larger

sequences, these changes ripple through the grammar,

forming and matching longer rules higher in the

hierarchy.

2.2 Rule utility

Until now, the right-hand sides of rules in the grammar

have contained only two symbols. Longer rules are

formed by the effect of the rule utility constraint, which

ensures that every rule is used more than once.

Figure 2d demonstrates the formation of a longer rule.

When d is appended to rule S, the new digram Bd

causes a new rule, C, to be formed. However, the

4

inclusion of this rule leaves only one appearance of

rule B, violating the second constraint. For this reason,

B is removed from the grammar, and its right-hand side

is substituted in the one place where it occurs.

Removing B means that rule C now contains three

symbols. This is the mechanism for creating long rules:

form a short rule temporarily, and if subsequent

symbols continue the match, allow a new rule to

supersede the shorter rule, and delete the shorter rule.

2.3 Efficient implementation

This simple algorithm—two constraints triggering two

responses—can be implemented efficiently, and

processes sequences at about two million symbols per

minute on a workstation.

The basic operations involved are:

• appending a symbol to rule S;

• using an existing rule;

• creating a new rule;

• deleting a rule.

Appending a symbol involves lengthening rule S.

Using an existing rule involves substituting a non-

terminal for a digram of two symbols, thereby

shortening the rules containing the digram. Creating a

new rule involves making a new non-terminal for the

left-hand side, as well as inserting two new symbols as

the right-hand side. After creating the rule,

substitutions are made as for an existing rule. Deleting

a rule involves moving its contents to replace a non-

terminal, which lengthens the rule containing the non-

terminal. The left-hand side of the rule must then be

deleted. Using appropriate doubly-linked list data

structures, each of these operations can be performed

very quickly.

To enforce the rule utility constraint, a usage count is

recorded for each rule and a rule is deleted when its

count drops to one. To enforce the digram uniqueness

constraint, whenever a new digram appears—i.e. as

each symbol is appended to rule S—the grammar must

be searched for any other occurrence of it. This is

accomplished by storing all digrams in a hash table,

handling collisions using “open addressing” (Knuth,

1973) along with the standard technique of double

hashing. Every time a new digram appears in the

grammar, it is added to the index. A new digram

appears as the result of two pointer assignments linking

two symbols together in the doubly-linked list. Thus

updating the index can be incorporated into the low-

level pointer assignments. A digram also disappears

from the grammar whenever a pointer assignment is

made—the pointer value that is overwritten by the

assignment represents a digram that no longer exists.

Figure 3 summarises the algorithm. Line 1 deals with

new observations in the sequence. Lines 2 through 6

enforce the digram utility constraint. Line 3 determines

whether the new digram matches an existing rule, or

whether a new rule is necessary. Lines 7 and 8 enforce

rule utility. Lines 2 and 7 are triggered whenever the

constraints are violated.

As well as being efficiently implementable, it can be

shown that the algorithm operates in time linear in the

length of the input string (Nevill-Manning and Witten,

1997). The basic idea of the proof is this: the two

constraints both have the effect of reducing the number

of symbols in the grammar, so the amount of work

done when satisfying them is bounded by the

compression achieved on the sequence. The saving

cannot exceed the original size of the input sequence,

so the algorithm is linear in the number of input

symbols.1

1 A minor caveat is that this result is based on a
register model of computation rather than a bitwise
one. It assumes that the average lookup time for the
hash table of digrams is bounded by a constant; this
is only true if hash function operations are register-
based. In practice, with a 32-bit architecture the
linearity proof remains valid for sequences of up to
around 109 symbols, and for a 64-bit architecture up
to 1019 symbols.

5

3 Qualitative evaluation in terms
of explanation

Figures 4, 5 and 6 show three structures discovered

from language, music and the output of a biological

modelling system respectively. We describe each in

turn.

SEQUITUR was used to infer the morphological

structure of English, French and German versions of

the Bible. The original texts are between 4 and 5

million characters long, and the resulting grammars

consist of about 100,000 rules and 600,000 symbols.

As noted earlier, the first rule, rule S, is very long,

whereas all the others are fairly short. In these

grammars, rule S contains about 400,000 symbols,

accounting for two thirds of the total size of the

grammar.

Figure 4 shows parts of the hierarchies inferred from

the three bibles. Each branch in the tree represents a

rule in the grammar, with its children representing the

right hand side of the rule. Spaces are made explicit as

bullets. At the top level, rule S, of the English version,

the verse is parsed into six subsequences: In the,

beginning, God, created, the heaven and the, and earth.

Four of these are words, and the other two are groups

of words. In the is broken up, at the next level down,

into In and the. The other phrase, the heaven and the is

split into the heaven and and the. The words beginning

and created consist of roots and affixes: beginning is

split into begin and ning, while created is split into

creat and ed. The root of beginning is begin, but the

normal form of the suffix is ing rather than ning.

SEQUITUR has no way of learning the consonant

doubling rule that English follows to create suffixes, so

other occurrences of words ending in ning cause this

rule to be formed. Similarly, whereas create is the

infinitive of the verb, ed is usually the affix for past

tense, so the division makes lexical, if not linguistic,

sense. For the most part, then, SEQUITUR segments

English plausibly.

SE Q U I T U R is language independent—the two

constraints on the grammar are not designed to favour

English. The German version of the same verse is split

into words and phrases, and eventually into words. In

fact, the hierarchy for the phrase die Himmel und die

Erde is very similar to the hierarchy for the English

equivalent. The French version is split correctly, with

commencement being broken into root commence and

suffix ment, analogously to beginning.

Figure 5 shows two chorales, O Welt, sieh hier dein

leben and O Welt, Ich muss Dich lassen, harmonised by

J.S. Bach (Mainous and Ottman, 1966). Shaded boxes

represent rules that SEQUITUR infers after processing a

corpus of chorales (which included these two), and the

nesting of the boxes indicates the hierarchy of rules.

The light grey boxes highlight the similarity of the first

and second half of the first chorale, and the second half

of the second chorale. In fact, these chorales are

harmonised from the same original melody, and have

been transposed and rhythmically altered for the lyrics.

The four darker boxes show the common parts of all

four halves, and the white box indicates a shorter motif

that is employed in other chorales. SEQUITUR also

forms rules for imperfect and perfect cadences by

comparison between chorales.

In order to model the topology and growth patterns of

living things, Aristid Lindenmayer created a class of

rewriting systems called L-systems (Lindenmayer,

1968) which excel at capturing fractal graphical

structure. The L-system in Figure 6a evaluates to the

sequence in Figure 6b, which, when interpreted as

LOGO commands, draws the plant in Figure 6d. From

this sequence SEQUITUR produces the grammar in

Figure 6c, which reflects the self-similarity of the

sequence at different levels in the similarity of rules S,

B and D . This grammar can be used to infer the

original recursive L-system by unifying similar rules. It

can also be used to form a graphical hierarchy that can

significantly optimise graphical rendering.

6

4 Quantitative evaluation in
terms of compression

The two constraints—digram uniqueness and rule

utility—ensure that redundancy due to repetition is

eliminated from a sequence. Digram uniqueness

eliminates a repetition of two symbols by forming a

rule that both occurrences can reference. Rule utility

eliminates superfluous rules when repetitions continue

for longer than two symbols.

The novel Far from the Madding Crowd by Thomas

Hardy is a benchmark sequence for data compression

schemes. As expressed in the file book1 as part of the

Calgary corpus (Bell et al., 1990), it is 768,771 bytes

long. The grammar that SEQUITUR forms from it has

27,365 rules, whose right-hand sides have an average

length of 1.97 symbols (excluding the first rule S). Rule

S contains 131,416 symbols, and there are 185,253

symbols in the entire grammar (not counting the

symbols that introduce each rule, for these can be

reconstructed from the sequence in which the grammar

is written). Thus by forming rules from repetitions,

SEQUITUR reduces the number of symbols to 25% of its

original value.

Unfortunately, the alphabet from which symbols are

drawn is greatly expanded, since names for 27,000

rules must be added. Simply numbering rules with

codes like ‘#42’ (for the forty-second rule) turns a

reduction to 25% in symbol count into an expansion to

150%. Of course, the distribution of symbols will be

highly skewed, and symbol counts are an extremely

poor indicator of compressibility.

We will describe two methods for encoding

SEQUITUR’s grammar. The first is straightforward but

performs poorly, while the second outperforms a good

macro compressor, gzip, and rivals a good statistical

compressor, PPMC.

4.1 Simple encoding method

To encode the grammar, we dispense with the textual

representation and consider transmitting it as a

sequence of symbols from a large alphabet, encoding

each according to its probability of occurrence. A

symbol that occurs with probability p can be encoded

in log2p bits, and arithmetic coding is a practical

method that can approach this bound arbitrarily closely

in the limit (Moffat et al., 1995). Statistical methods

such as PPM that use arithmetic coding condition the

probability of a symbol on the preceding symbols

(Cleary and Witten, 1984). Because no digram appears

twice in the grammar produced by SEQUITUR, this

approach yields no gain. For that reason, a single

distribution based on the frequency of each symbol—in

other words, an order-zero model—is used to encode

the grammar in the first instance.

Forming a grammar for the novel and encoding it using

an order-zero frequency model results in a compression

rate of 3.49 bits per character (bpc)—a rather

disappointing figure when compared with standard

compression methods. For example, UNIX compress

achieves a compression rate of 3.46 bpc; gzip achieves

3.25 bpc; and a good general-purpose compression

scheme, PPMC, reduces the novel to 2.52 bpc.

In principle, SEQUITUR should be able to rival the best

dictionary schemes, because forming rules is similar to

forming a dictionary. Furthermore, since SEQUITUR

stores its dictionary as a hierarchy it should be capable

of outperforming other dictionary techniques. We now

describe how this can be achieved by sending the

grammar implicitly.

4.2 Implicit encoding method

Rather than sending a list of rules, it is better to adopt

an implicit encoding technique that sends the sequence,

and whenever a rule is used, transmits sufficient

information to the decoder for it to reconstruct the rule.

Because rule S represents the entire sequence, this is

tantamount to sending rule S and transmitting other

7

rules as they appear. When a non-terminal is

encountered in rule S, it is treated in three different

ways depending on how many times it has been seen.

The first time it occurs, its contents are sent. At this

point, the decoder is unaware that the symbols will

eventually become a rule. On its second occurrence, a

pointer is sent that identifies the contents of the rule

that was sent earlier. The pointer consists of an offset

from the beginning of rule S and the length of the

match, similar to the pointers used in LZ77 (Ziv and

Lempel, 1977). At the decoding end, this pointer is

interpreted as an instruction to form a new rule, with

the target of the pointer comprising the contents of the

rule. The decoder numbers rules in the order in which

they are received, and the encoder keeps track of this

numbering. On the third and subsequent occurrences of

the non-terminal, this number is used to identify the

non-terminal.

The advantage of this approach is that the first two

times a rule is used, the non-terminal that heads it need

not be sent. For example, under the previous scheme, a

rule that is used twice is transmitted by sending two

non-terminals, the rule contents, and an end-of-rule

marker. Under the new scheme, only the contents and a

pointer are necessary. Furthermore, rules are sent only

when they are needed. If the grammar were processed

rule by rule, starting with rule S, rules would either be

encountered before they were referenced, in which case

a code would be reserved unnecessarily, or referenced

before they were sent, in which case the decoder’s

reconstruction of the sequence would be delayed.

Sending the grammar for book1 implicitly yields a

compression rate of 2.82 bpc. This is better than the

other dictionary techniques, and only 12% worse than

PPMC.

The sequence in Figure 1b is transmitted using this

scheme as abcd(1,2)(0,4). Because both rules A and B

only occur twice, no non-terminals appear in the

encoding. The sequence is sent by transmitting rule S,

which consists of two instances of rule 2. The first time

rule 2 appears, its contents are transmitted. This

consists of a➀d➀. The first symbol, a, is encoded

normally. The first time rule 1 appears, its contents, bc,

are sent. The next symbol, d, is sent as normal. Now

rule 1 appears for the second time, and the pointer (1,2)

is sent. The first element of the pointer is the distance

from the start of the sequence to the start of the first

occurrence of bc, in this case 1. The second element of

the pointer is the length of the repetition: 2. Now the

decoder forms a rule 1 → bc, and replaces both

instances of bc in the sequence with ➀. Having

transmitted the first instance of rule 2 in its entirety, the

encoder returns to rule S to transmit the second

occurrence of rule 2. The repetition starts at the

beginning of the sequence, at distance 0, and continues

for 4 symbols. The length refers to the 4-symbol

compressed sequence, rather than the uncompressed

repetition, which is 6 symbols long. A more detailed

description can be found in Nevill-Manning et al.

(1994).

4.3 Comparison with macro schemes

The phrases that are discovered improve on the

dictionaries of macro-based compression schemes in

four ways. First, the dictionary is stored hierarchically,

using shorter dictionary entries as part of longer ones.

Second, there is no window to reduce searching time

and memory usage at the expense of forgetting useful

repetitions. Third, the length of dictionary entries is not

limited. Fourth, there are no unnecessary phrases in the

dictionary. Each of these advantages is expanded

below.

Using a hierarchical representation for the dictionary

means that rules can be transmitted more efficiently.

The saving comes from the smaller pointer needed to

specify both the start of the repetition and its length.

Because rules properly contain other symbols—i.e.

they do not overlap other non-terminals—the number

of places a rule can start is reduced to the number of

8

symbols currently in the grammar. Furthermore, the

length of the repetition is expressed in terms of the

number of terminal and non-terminal symbols that it

spans, rather than the number of original terminals.

This means that the length will usually be shorter than

the corresponding length specified relative to the

original sequence. This corresponds to Storer and

Szymanski’s (1982) compressed pointer macro

classification.

The lack of a finite window for pointer targets has

several ramifications. First, it undoes some of the

improvement achieved by using a hierarchical

dictionary, because it allows a greater number of

targets for pointers. Second, the lack of windowing

usually means that memory usage and search time both

grow. SEQUITUR’s memory usage is linear in the length

of the input string: this is unavoidable given the basic

design of the algorithm. However, SEQUITUR’s linked-

list data structures and digram indexing scheme mean

that the average search time is bounded. The advantage

of the lack of a window is that all repetitions can be

detected, no matter how far they are separated.

LZ78 (Ziv and Lempel, 1978) techniques add items to

the dictionary speculatively—a particular entry is not

guaranteed to be used. This saves the cost of specifying

which phrases should be included in the dictionary, but

means that the codes assigned to unused entries are

wasted. SEQUITUR only forms a rule when repetitions

occur, combining the LZ77 policy of specifying a

repetition only when needed with the LZ78 technique

of maintaining a dictionary. Furthermore, LZ78

techniques grow the dictionary slowly, whereas

SEQUITUR can send a rule of any length in one step.

This does not always result in superior compression, as

the results in the next section illustrate.

4.4 Compression performance

The results for four compression methods—compress,

gzip, the standard implementation of P P M C and

SEQUITUR—for the Calgary corpus are shown in Table

1. The best figure for each row is highlighted. Overall,

SEQUITUR outperforms all schemes other than PPMC,

which is 6% better. Although it beats gzip on average,

it is worse on 8 out of the 14 individual files. SEQUITUR

beats PPMC on the geophysical data, the picture, and the

transcript. While PPMC is better able to detect subtle

probabilistic relationships between symbols that

typically appear in highly variable sequences such as

text, SEQUITUR excels at capturing exact, long

repetitions that occur in highly structured files—

although direct comparison is somewhat unfair to PPMC

because it was run with standard parameters that

restrict memory usage to well below that consumed by

SEQUITUR. While SEQUITUR does not perform as well

as P P M C on text such as book1 and book2, it

outperforms it on longer text such as the King James

version of the Bible, shown in the last row of Table 1.

For highly structured sequences such as the output

from L-systems, SEQUITUR performs very well indeed.

The row labelled L-systems in Table 1 shows

compression performance of various schemes on the

output of context-sensitive, stochastic L-systems. PPMC

performs the worst because it fails to capitalise on the

very long repetitions that exist. Gzip performs two to

four times better than PPMC. Surprisingly, the textual

version of SEQUITUR’s grammar is thirteen times

smaller than PPMC’s output and three times smaller

than gzip’s output. The encoded version of SEQUITUR’s

grammar is 1300 times smaller than the original.

The second to last row of Table 1 shows compression

performance on a sequence of amino acids specified by

parts of human DNA. SEQUITUR outperforms the next

best scheme, PPMC, by 7%. This implies that SEQUITUR

captures structure ignored by the other schemes. The

biological significance of this structure is a matter for

future work, in collaboration with biochemists.

5 Discontiguous dependencies
in semi-structured text

Thus far, we have discussed how the repetition of

contiguous subsequences of symbols can be detected

9

and exploited. In realistic settings, relationships occur

between symbols, and between subsequences, that are

not adjacent to each other. We introduce here a

particular kind of input, semi-structured text, which is

ubiquitous and generally exhibits this kind of

dependency quite strongly.

We define semi-structured text as data that is both

readable by humans and suitable for automatic

processing by computers (Nevill-Manning et al., 1996).

A widespread example of this is the hypertext markup

language HTML . This consists of free text interspersed

with structural information specified by markup tags.

Tags are drawn from a limited set of reserved words,

and the sequence of tags throughout a document is

intended to conform to a prescribed grammar. Two

kinds of sequence therefore coexist: at one level there

is relatively unpredictable free text, whereas at another

the markup is highly structured.

The situation is even more pronounced in some semi-

structured databases. In the remainder of this section

we will study two genealogical databases maintained

by the Latter Day Saints Church: the International

Genealogical Index, which stores birth, death and

marriage records, and the Ancestral File, which stores

linked pedigrees for families all over the world. The

former contains the records of over 265 million people

while the latter contains records for over 21 million;

they are growing at a rate of 10% to 20% per year.

Figure 7 shows an example of an individual record, a

family record, and the beginning of another individual

record. The first gives name, gender, birth date,

birthplace, and a pointer to the individual’s family. The

family record, which follows directly, gives pointers to

four individuals: husband, wife, and two children—one

of which is the individual himself. This example,

however, gives an impression of regularity which is

slightly misleading. For most of the information-

bearing fields such as NAME, DATE, and PLACE, there

are records that contain free text rather than structured

information. For example, the last line of Figure 7

shows a name given with an alternative. The DATE field

might be ‘Abt 1767’ or ‘Will dated 14 Sep 1803.’

There is a NOTE field (with a continuation line code)

that frequently contains a brief essay on family history.

Nevertheless, the tags such as NAME and DATE and the

level numbers at the beginning of each line are strongly

related, and certain template structures do recur. The

purpose of this section is to show how such regularities

can be exploited.

5.1 Learning the structure of the genealogical
database

The data was presented to SEQUITUR as a sequence of

words, where words were viewed as sequences of

characters delimited by a single space (thus words

sometimes began with spaces). The dictionary was

encoded separately from the word sequence, which was

represented as a sequence of numeric dictionary

indexes. The input comprised 1.8 million words, and

the dictionary contained 148,000 unique entries. The

grammar that SEQUITUR formed had 71,000 rules and

648,000 symbols, 443,000 of which were in the top-

level rule. The average length of a rule (excluding the

top-level one) was nearly 3 words.

Examination of SEQUITUR’s output reveals that

significant improvements could be made quite easily

by making small changes to the organisation of the

input file. We first describe how this was done

manually, by using human insight to detect regularities

in SEQUITUR’s output; next, we show how the grammar

can be interpreted; and finally, we show how the

process of identifying such situations can be

automated.

5.2 Manual generalisation

Of the dictionary entries, 94% were codes used to

relate records together for various familial

relationships. Two types of code are used in the

database: individual identifiers such as @26DS-KX@,

and family identifiers such as @00206642@. These

codes obscure template structures in the database—the

10

uniqueness of each code means that no phrases can be

formed that involve them. For example, the line

0 @26DS-KX@ INDI

in Figure 7 occurs only once, as do all other INDI lines

in the file, and so the fact that 0 and INDI always occur

together is obscured: SEQUITUR cannot take advantage

of it. In fact, the token INDI occurs 33,000 times in the

rules of the grammar, and in every case it could have

been predicted with 100% accuracy by noting that 0

occurs two symbols previously, and that the code is in

the individual identifier format.

This prediction can be implemented by replacing each

code with the generic token family or individual, and

specifying the actual codes that occur in a separate

stream. Replacing the code in the example above with

the token individual yields the sequence

0 individual INDI ,

which recurs many thousands of times in the file and

therefore causes a grammar rule to be created. In this

grammar, INDI occurs in a rule that covers the phrase

↵ 0 individual INDI ↵ 1 AFN individual↵ 1 NAME.

This is now the only place that INDI occurs in the

grammar.

Overall, this strategy halves the number of rules in the

grammar, the length of the top-level rule, and the total

number of symbols.

5.3 Interpreting the grammar

Figure 8 shows nine of the 35,000 rules in SEQUITUR’s

grammar for the sequence with generalised codes,

renumbered for clarity. Rule ➀ is the second most

widely used rule in the grammar: it appears in 261

other rules.2 The other eight rules are all those that are

referred to, directly or indirectly, by rule ➀: Figure 8b

2 The most widely used rule is 2 PLAC, which occurs
358 times, indicating that the text surrounding the
place tag is highly variable. However, the structure
of the rule itself is uninteresting.

shows the hierarchy graphically. The topmost line in

Figure 8b represents rule ➀. The two branches are rules

➁ and ➂ , the contents of rule ➀. The hierarchy

continues in this way until all of the rules have been

expanded.

Rule ➀ represents the end of one record and the

beginning of the next. Rule ➈ is effectively a record

separator (recall that each new record starts with a line

at level 0), and this occurs in the middle of rule ➀.

Although grouping parts of two records together

achieves compression, it violates the structure of the

database, in which records are integral. However, the

two parts are split apart at the second level of the rule

hierarchy, with one rule, ➁, for the end of one record,

and another, ➂, for the start of the next. The short rules

➆ and ➈ capture the fact that every line begins with a

nesting level number. There is also a rule for the entire

SEX field indicating the person is female, which

decomposes into the fixed part 1 SEX and the value F

on the end, so that the first part can also combine with

M to form the other version of the SEX field. There is a

similar hierarchy for the end of a male record, which

occurs 259 times.

As for the usage of this rule, Figure 8c shows part of

rule S. Here, rules have been expanded for clarity:

parentheses are used to indicate a string which is

generated by a rule. This part of the sequence consists

mainly of rule ➀ in combination with different names.

Separate rules have been formed for rule ➀ in

combination with common first names.

5.4 Automatic generalisation

In order to automate the process of identifying

situations where generalisation is beneficial, it is first

necessary to define the precise conditions that give rise

to possible savings. In the case described above, the

rule

INDI ↵ 1 AFN

occurred many times in the grammar, and accounted

for a significant portion of the compressed file.

11

Conditioning this phrase on a prior occurrence of ↵ 0

greatly increases its predictability. The problem is that

other symbols may be interposed between the two. One

heuristic for identifying potential savings is to scan the

grammar for pairs of phrases where the cost of

specifying the distances of the second relative to the

first (predictive coding) is less than the cost of coding

the second phrase by itself (explicit coding).

Figure 9 gives two illustrations of the tradeoff. In the

top half of Figure 9, using normal coding, the cost of

coding the Bs is three times the cost of coding an

individual B: log2(frequency of B / total symbols in

grammar) bits. For predictive coding, the statement ‘A

predicts B’ must be encoded once at the beginning of

the sequence. Reducing this statement to a pair of

symbols, AB, the cost is just the sum of encoding A and

B independently. Each time that A occurs, it is

necessary to specify the number of intervening symbols

before B occurs. In the example, A<3> signifies that

the next B occurs after three intervening symbols.

These distances are encoded using an adaptive order-0

model with escapes to introduce new distances.

The bottom half of Figure 9 shows a more complex

example, where two As appear with no intervening B,

and a B occurs with no preceding A. The first situation

is flagged by a distance of ∞, and the second is handled

by encoding B using explicit coding.

5.5 Algorithm for automatic generalisation

The procedure for identifying useful generalisations

considers every pair of symbols as a candidate for

generalisation, where symbols include both terminals

and non-terminals; thus the algorithm is quadratic in

the number of rules. It works as follows.

First, as a preliminary step, a list is made for every

symbol (whether terminal or non-terminal) of all

positions where that symbol occurs in the original

sequence. For each rule (other than rule S) in which the

symbol appears, all positions in which the rule occurs

are added to the list for the symbol itself, so that the

symbol effectively inherits the positions of rules in

which it appears.

Next, for each pair of unique symbols, one symbol is

chosen as the predictor and the other as the predicted

symbol. The gaps between the two are calculated as in

Figure 9, and the total number of bits required to

encode the predicted symbol using both explicit and

predictive coding is calculated. Then the

predictive/predicted roles are reversed, and the savings

are recorded in the corresponding cell in a matrix of

symbol-symbol pairs. Once this calculation has been

performed for all symbol pairs, those with greatest

savings are turned into generalisations.

Table 2 shows the top ranking pairs of phrases, the

number of bits required for the predicted symbol with

the explicit coding, the number of bits required using

predictive coding, and the total savings. The ellipsis

between the two phrases in the first column represents

the variable content between the keywords. At the top

of the list is the prediction

↵ 0 ... INDI ↵ 1 AFN,

which is the relationship that we exploited by hand—

the intervening symbol represented by the ellipsis is an

individual code. Predictions 2, 3 and 6 indicate that the

codes should be generalised after the AFN, FAMS and

FAMC tags respectively. Predictions 5, 7 and 9

indicate that dates should be generalised. Prediction 4

indicates that the SEX field can be generalised by

replacing the two possible tags, F and M. Finally,

prediction 8 indicates that names should be

generalised. The generic tokens are equivalent to non-

terminals that can have all possible codes, etc. as their

bodies.

Figure 7 shows the content in grey and the identified

structure in black. This demonstrates that the structure

and content have been successfully distinguished. By

identifying significant phrases and predictive

relationships between them, the database template

structure has been discovered. This is possible because

of the reliable statistics that a large sample provides. In

12

the next section, we will see that these inferences

significantly increase compression performance.

5.6 Compressing semi-structured text

The genealogical databases are currently stored using a

scheme that performs special-purpose compression

designed specifically for this particular format, and

compresses a typical excerpt to 16% of its original size.

(Because we do not have access to the compression

system, exact figures are not available for this excerpt.)

Table 3 shows the results of several compression

programs on the 9 MB sample. With the sole exception

of MG (Witten et al., 1994), these compression

programs do not support random access to records of

the database, and are not suitable for use in practice

because random access is always a sine qua non for

information collections of this size.

The first block of Table 3 summarises the performance

of several byte-oriented schemes. UNIX compress

provides a benchmark bound on the possible

compression, while gzip achieves substantially better

compression. PPMC performs extremely well on the

data, giving a compression rate of over six to one. For

all these schemes, compression rates are about twice as

great as they are on book1 from the Calgary corpus,

which indicates the high regularity of this database

relative to normal English text.

The next block of Table 3 summarises the performance

of some word-oriented compression schemes. These

schemes split the input into an alternating sequence of

words and non-words—the latter comprising white

space and punctuation. WORD uses a Markov model

that predicts words based on the previous word and

non-words based on the previous non-word, resorting

to character-level coding whenever a new word or non-

word is encountered (Moffat, 1989). We used both a

zero-order context (WORD-0) and a first-order one

(WORD-1). MG is a designed for full-text retrieval and

uses a semi-static zero-order word-based model, along

with a separate dictionary (Witten et al., 1994). In this

scheme, as in W O R D-0, the code for a word is

determined solely by its frequency, and does not

depend on any preceding words. This proves rather

ineffective on the genealogical database, indicating the

importance of inter-word relationships. WORD-1

achieves a compression rate that falls between that of

compress and gzip. The relatively poor performance of

this scheme is rather surprising, indicating the

importance of sequences of two or more words as well

perhaps as the need to condition inter-word gaps on the

preceding word and vice versa. None of these standard

compression schemes perform as well as the original

ad hoc special-purpose compression program, except,

marginally, PPMC.

To compress the database using SEQUITUR, the

sequence of word numbers is compressed using the

encoding described in Section 4.1. The dictionary was

compressed in two stages: front coding followed by

PPMC. Front coding (Gottlieb et al., 1975) involves

sorting the dictionary, and whenever an entry shares a

prefix with the preceding entry, replacing the prefix by

its length. For example, the word baptized would be

encoded as 7d if it were preceded by baptize, since the

two have a prefix of length 7 in common. A more

principled dictionary encoding was also implemented,

but failed to outperform this simple approach.

The grammar, when encoded using the method

described above, was 1.07 Mb in size. The dictionary

compressed to 0.11 Mb, giving a total size for the

whole text of 1.18 Mb, as recorded at the top of the

bottom block of Table 3. This represents almost eight

to one compression, some 20% improvement over the

nearest rival, PPMC.

Generalising the codes, as described in Section 5.2,

halves the number of rules in the grammar, the length

of the top-level rule, and the total number of symbols.

The compressed size of the grammar falls from

1.07 Mb to 0.60 Mb. However, the codes need to be

encoded separately. To do this, a dictionary of codes is

constructed and compressed in the same way as the

dictionary for the main text. Each code can be

13

transmitted in a number of bits given by the logarithm

of the number of entries in the code dictionary. The

total size of the two files specifying the individual and

family codes in this way is 0.40 Mb, bringing the total

for the word indexes to 1.0 Mb, a 7% reduction over

the version with codes contained in the text. Including

the dictionaries gives a total of 1.11 Mb to recreate the

original file.

Separating the dictionaries represents the use of some

domain knowledge to aid compression, so comparisons

with general-purpose compression schemes is unfair.

For this reason, PPMC was applied to the same parts as

SEQUITUR, to determine what real advantage SEQUITUR

provides. PPMC was first applied in a byte-oriented

manner to the sequence of word indexes. It compressed

these to 1.07 Mb, far worse than SEQUITUR’s 0.60 Mb.

In an attempt to improve the result, PPMC was run on

the original file with generic tokens for codes, yielding

a file size of 0.85 Mb—still much worse than

SEQUITUR’s result. Note that this approach does

outperform running PPMC on the unmodified file.

Finally, the W O R D-1 scheme was applied to the

sequence of generalised codes, but the result was worse

still. Note, however, that the performance of PPMC and

WORD could no doubt be improved by utilizing models

of higher order.

Table 2 ranks possible generalisations in order of their

usefulness. Predictions 1, 2, 3 and 6 encourage

generalisation of codes, which has been performed.

Predictions 5, 7 and 9 indicate that dates should be

generalised. Extracting dates in a way analogous to the

extraction of codes from the main text reduces the

grammar from 0.60 Mb to 0.31 Mb, and adds 0.24 Mb

to specify the dates separately. This represents a net

gain of 0.05 Mb, or 5%. Prediction 4 indicates that the

SEX field can be generalised by replacing the two

possible tags, F and M. Acting on this reduces the size

by a further 1%. Finally, prediction 8 indicates that

names should be generalised, resulting in a final

compressed size of 1.04 Mb, or a ratio of almost nine

to one. The final block of Table 3 summarises these

improvements.

6 Conclusion

It has often been argued that compression and learning

are closely related. Over the centuries, Occam’s razor

has been invoked as informal justification for shaving

philosophical hairs off otherwise baroque theories. In

recent years, formal compressive metrics are

increasingly being adopted to evaluate the results of

machine learning. However, there are few, if any,

general-purpose systems that combine realistic

compression with useful insight into the structure of

what is being compressed. Neither statistical nor

macro-based compression schemes generate insightful

structural descriptions of the sequences being

compressed.

The SEQUITUR system presented here has a foot in both

camps. It achieves respectable compression on ordinary

sequences such as natural language text. It also

produces structural descriptions that reveal interesting

aspects of the sequences being compressed. The basic

algorithm represents sequences in terms of a

hierarchical structure of rewrite rules. These rules

identify the phrases that occur in the string, where

phrases are not defined by any statistical measure but

merely correspond to sequences that occur more than

once.

The algorithm is remarkable in that it operates (a)

incrementally, (b) in time linear with sequence length,

and (c) efficiently enough to be used on large

sequences containing many millions of symbols. These

advantages stem from its underlying elegance, based

on the maintenance of two simple constraints. To give

an idea of the resources it consumes, on multi-Mbyte

files it processes input at the rate of two Mbyte per

minute on an current workstation, and the memory

required is about twice that needed to store the input.

The basic SEQUITUR algorithm provides good

compression, when its output is suitably transformed

14

by coding rules implicitly, and useful insight into the

structure of sequences. More importantly, because the

representation of sequences in terms of rewrite rules is

so natural and transparent, it is particularly easy to

modify the basic algorithm to enhance both

compression and comprehensibility for certain genres

of sequence. For example, we noted in Section 3 that,

given the noise-free output of an L-system, the original

recursive hierarchy can be inferred by unifying similar

rules, combining phenomenal compression with exact

reconstruction of the source. And we saw in Section 5

that given a large, real-world, noisy, sample of semi-

structured text, inferences can be made automatically

about the source that are both insightful and provide

compression significantly superior to rival methods.

Acknowledgments

David Maulsby, from Stanford University, suggested

representing structure as a hierarchical grammar. Dan

Olsen from Brigham Young University collaborated

with us on the genealogical database project. The

phrase ‘discontiguous dependencies’ is inspired by

Gerry Wolff from the University of Wales.

References
Bell, T.C., Cleary, J.G., and Witten, I.H. (1990) Text

compression. Englewood Cliffs, NJ: Prentice-
Hall.

Cleary, J.G., and Witten, I.H. (1984) “Data
compression using adaptive coding and partial
string matching,” IEEE Transactions on
Communications, COM-32(4), 396-402.

GEDCOM Standard: Draft release 5.4, Salt Lake City,
Utah: Family History Department, The Church of
Jesus Christ of Latter-day Saints.

Gottlieb, D., Hagerth, S.A., Lehot, P.G.H., and
Rabinowitz, H.S. (1975) “A classification of
compression methods and their usefulness for a
large data processing center,” Proc. National
Computer Conference, 453-458.

Knuth, D.E. (1973) The art of computer programming
3: searching and sorting. Reading, MA: Addison-
Wesley.

Lindenmayer, A. (1968) “Mathematical models for
cellular interaction in development, Parts I and
II,” Journal of Theoretical Biology, 18, 280-315.

Mainous, F.D., and Ottman, R.W. (1966) The 371
chorales of Johann Sebastian Bach. New York:
Holt, Rinehart and Winston, Inc.

Moffat, A. (1989) “Word-based text compression,”
Journal of Software—Practice and Experience,
19(2), 185–198.

Moffat, A., Neal, R., and Witten, I.H. (1995)
“Arithmetic coding revisited,” Proc. Data
Compression Conference, Snowbird, Utah, 202-
211.

Nevill-Manning, C.G., Witten, I.H., and Maulsby, D.L.
(1994) “Compression by induction of hierarchical
grammars,” Proc. Data Compression Conference,
Snowbird, Utah, 244-253.

Nevill-Manning, C.G. (1996) Inferring Sequential
Structure, Ph.D. thesis, Department of Computer
Science, University of Waikato, Hamilton, New
Zealand.

Nevill-Manning, C.G., Witten, I.H., and Olsen, D.R.
(1996) “Compressing semi-structured text using
hierarchical phrase identification,” Proc. Data
Compression Conference, Snowbird, Utah, 53–
72.

Nevill-Manning, C.G. and Witten, I.H. (1997) “Linear-
time, incremental hierarchy inference for
compression,” Proc. Data Compression
Conference, Snowbird, Utah, 3–11.

Storer, J.A. and Szymanski, T.G. (1982) “Data
compression via textual substitution,” Journal of
the Association for Computing Machinery, 29(4),
928-951.

Witten, I.H., Moffat, A., and Bell, T.C. (1994)
Managing Gigabytes: compressing and indexing
documents and images. New York: Van Nostrand
Reinhold.

Wolff, J.G. (1980) “Language acquisition and the
discovery of phrase structure,” Language and
Speech, 23(3), 255–269.

Ziv, J., and Lempel, A. (1977) “A universal algorithm
for sequential data compression,” I E E E
Transactions on Information Theory, IT-23(3),
337-343.

Ziv, J., and Lempel, A. (1978) “Compression of
individual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, IT-
24(5), 530-536.

15

Figure 1 Example sequences and grammars that reproduce them
(a) a sequence with one repetition
(b) a sequence with a nested repetition
(c) two grammars that violate the two constraints.

Figure 2 Operation of the two grammar constraints
(a) Enforcing digram uniqueness by creating a new rule
(b) Re-using an existing rule
(c) Forming a hierarchical grammar
(d) Producing a longer rule by enforcing rule utility

Figure 3 The entire SEQUITUR algorithm

Figure 4 Hierarchies for Genesis 1:1 in (a) English, (b) French, and (c) German

Figure 5 Illustration of matches within and between two chorales: for chorales O Welt, sieh hier dein leben and O
Welt, Ich muss Dich lassen by J.S. Bach

Figure 6 Inference of grammars from L-system output
(a) an L-system
(b) a string produced by the L-system
(c) non-recursive grammar inferred by SEQUITUR

(d) graphical interpretation of (b)

Figure 7 An excerpt from the GEDCOM genealogical database,
with structure and content distinguished

Figure 8 A phrase from the genealogical database
(a) hierarchical decomposition
(b) graphical representation
(c) examples of use

Figure 9 Examples of two ways of coding symbol B

Table 1 Performance of various compression schemes (bits per character)

Table 2 Predictions based on part of the GEDCOM database

Table 3 Compression rates of various schemes on the genealogical data

16

a Sequence Grammar

S → abcdbc S → aAdA
A → bc

b Sequence Grammar

S → abcdbcabcdbc S → AA
A → aBdB
B → bc

c Sequence Grammar

S → abcdbcabcdbc S → AA
A → abcdbc

S → CC
A → bc
B → aA
C → BdA

Figure 1 Example sequences and grammars that reproduce them
(a) a sequence with one repetition
(b) a sequence with a nested repetition
(c) two grammars that violate the two constraints.

17

new symbol
or action

the string so
far

resulting grammar duplicate
digrams

underused
rules

a a a S → a

b ab S → ab

c abc S → abc

d abcd S → abcd

b abcdb S → abcdb

c abcdbc S → abcdbc bc

enforce digram
uniqueness

S → aAdA
A → bc

b a abcdbca S → aAdAa
A → bc

b abcdbcab S → aAdAab
A → bc

c abcdbcabc S → aAdAabc
A → bc

bc

enforce digram
uniqueness

S → aAdAaA
A → bc

aA

c enforce digram
uniqueness

abcdbcabc S → BdAB
A → bc
B → aA

d d abcdbcabcd S → BdABd
A → bc
B → aA

Bd

enforce digram
uniqueness

S → CAC
A → bc
B → aA
C → Bd

B

enforce rule utility S → CAC
A → bc
C → aAd

Figure 2 Operation of the two grammar constraints
(a) Enforcing digram uniqueness by creating a new rule
(b) Re-using an existing rule
(c) Forming a hierarchical grammar
(d) Producing a longer rule by enforcing rule utility

18

As each new input symbol is observed, append it to rule S.

Whenever a duplicate digram appears,
if the other occurrence is a complete rule,

replace the new digram with the non-terminal that heads the other digram,
otherwise

form a new rule and replace both digrams with the new non-terminal

Whenever a rule is used only once,
remove the rule, substituting its contents in place of the non-terminal

Figure 3 The entire SEQUITUR algorithm

a

I n ¥ t h e ¥ b e g i n n i n g ¥ G o d ¥ c r e a t e d ¥ t h e ¥ h e a v e n ¥ a n d ¥ t h e ¥ e a r t h

b

¥ A u ¥ c o m m e n c e m e n t , ¥ D i e u ¥ c r � a ¥ l e s ¥ c i e u x ¥ e t ¥ l a ¥ t e r r e

c

¥ I m ¥ A n f a n g ¥ s c h u f ¥ G o t t ¥ d i e ¥ H i m m e l ¥ u n d ¥ d i e ¥ E r d e

Figure 4 Hierarchies for Genesis 1:1 in (a) English, (b) French, and (c) German

imperfect perfect

Figure 5 Illustration of matches within and between two chorales for chorales O Welt, sieh hier dein
leben and O Welt, Ich muss Dich lassen by J.S. Bach.

19

a

b

c

S → f
f → f[+f]f[–f]f

f[+f]f[-f]f[+f[+f]f[-
f]f]f[+f]f[-f]f[-f[+f
]f[-f]f]f[+f]f[-f]f[+
ff[+f]f[-f]f[+f[+f]f[-
-f]f]f[+f]f[-f]f[-f[+
f]f[-f]f]f[+f]f[-f]f]
f[+f]f[-f]f[+f[+f]f[-
f]f]f[+f]f[-f]f[-f[+f
]f[-f]f]f[+f]f[-f]f[-
f[+f]f[-f]f[+f[+f]f[-
f]f]f[+f]f[-f]f[-f[+f
]f[-f]f]f[+f]f[-f]f]f
[+f]f[-f]f[+f[+f]f[-f
]f]f[+f]f[-f]f[-f[+f]
f[-f]f]f[+f]f[-f]f

S → BFAGA
A → B]B
B → DFCGC
C → D]D
D → fFEGE
E → f]f
F → [+
G → [-

d

Figure 6 Inference of grammars from L-system output
(a) an L-system
(b) a string produced by the L-system
(c) non-recursive grammar inferred by SEQUITUR

(d) graphical interpretation of (b)

0 @26DS-KX@ INDI
1 AFN 26DS-KX
1 NAME Dan Reed /OLSEN/
1 SEX M
1 BIRT
2 DATE 22 JUN 1953
2 PLAC Idaho Falls,Bonneville,Idaho
1 FAMC @00206642@
0 @00206642@ FAM
1 HUSB @NO48-3F@
1 WIFE @93GB-DD@
1 CHIL @26DS-KX@
1 CHIL @21B7-WR@
0 @26DN-7N@ INDI
1 NAME Mary Ann /BERNARD

Figure 7 An excerpt from the GEDCOM genealogical database,
with structure and content distinguished

20

a ➀ → ➁➂
➁ → ➃➄
➂ → ➈individual INDI➆AFN individual➆NAME
➃ → ➅ F
➄ → ➆➇
➅ → 1 SEX
➆ → ↵ 1
➇ → FAMS family
➈ → ↵ 0

b

1 SEX F ↵ 1 FAMS fam ↵ 0 indi INDI ↵ 1 AFN indi ↵ 1 NAME

➀
➁

➂➃ ➄
➈ ➆ ➆➅ ➆

c ... ➀ Sybil Louise /MCGHIE/ (➀ Eliza) Jane /LOSEE/ (➀ Margaret) /SIMMONS/
(➀ Marie) Elizabeth /BERREY/ ➀ Athena Augusta /ROGERS/ (➀ William) Henry /WINN/ ...

Figure 8 A phrase from the genealogical database
(a) hierarchical decomposition
(b) graphical representation
(c) examples of use

explicit predictive

to encode the Bs in encode ... B ... B ... B ... ‘A predicts B’, A<3> ... A<4> ... A<4>

AabcB ... AdefgB ... AhijkB cost 3 × cost(B) cost(A) + cost(B) + cost(3, 4, 4)

explicit predictive

to encode the Bs in encode ... B ... B ... B ‘A predicts B’, A<3> ... A<∞> ... A<4> ... B

AabcB ... A ... AhijkB ... B cost 3 × cost(B) cost(A) + cost(B) + cost(3, ∞, 4) + cost(B)

Figure 9 Examples of two ways of coding symbol B

21

name description size compress gzip SEQUITUR PPMC

bib bibliography 111261 3.35 2.51 2.48 2.12

book1 fiction book 768771 3.46 3.25 2.82 2.52

book2 non-fiction book 610856 3.28 2.70 2.46 2.28

geo geophysical data 102400 6.08 5.34 4.74 5.01

news USENET 377109 3.86 3.06 2.85 2.77

obj1 object code 21504 5.23 3.84 3.88 3.68

obj2 object code 246814 4.17 2.63 2.68 2.59

paper1 technical paper 53161 3.77 2.79 2.89 2.48

paper2 technical paper 82199 3.52 2.89 2.87 2.46

pic bilevel image 513216 0.97 0.82 0.90 0.98

progc C program 39611 3.87 2.68 2.83 2.49

progl Lisp program 71646 3.03 1.80 1.95 1.87

progp Pascal program 49379 3.11 1.81 1.87 1.82

trans shell transcript 93695 3.27 1.61 1.69 1.75

average 3.64 2.69 2.64 2.49

L-systems 908670 0.38 0.07 0.01 0.32

amino acids 1586289 4.52 4.08 3.28 3.54

Bible King James version 4047392 2.77 2.32 1.84 1.92

Table 1 Performance of various compression schemes (bits per character)

Prediction Normal

(bits/symbol)

Predicted

(bits/symbol)

Saving

(total bits)

1 ↵ 0 ... INDI ↵ 1 AFN 3.12 0.01 2298

2 INDI ↵ 1 AFN ... ↵ 1 NAME 3.12 0.01 2298

3 FAMS ... ↵ 0 2.25 0.81 638

4 ↵ 1 SEX ... ↵ 2 0.96 0.06 656

5 BAPL ... ↵ 1 ENDL 1.57 0.76 509

6 FAMC ... ↵ 1 FAMS 2.57 1.47 427

7 ↵ 1 BIRT↵ 2 DATE ... ↵ 2 PLAC 1.88 1.11 382

8 ↵ 1 NAME ... ↵ 1 SEX 1.25 0.82 315

9 ENDL ... ↵ 1 SLGC 2.15 1.58 266

Table 2 Predictions based on part of the GEDCOM database

22

scheme dictionary code
indexes

word
indexes

total size
(Mb)

compression

original – 9.18 100.0%

byte-oriented compress 2.55 27.8%

gzip 1.77 19.3%

PPMC 1.42 15.5%

word-oriented WORD-0 – – – 3.20 34.8%

WORD-1 – – – 2.21 24.1%

MG 0.14 – 2.87 3.01 32.8%

SEQUITUR 0.11 – 1.07 1.18 12.9%

SEQUITUR with codes 0.11 0.40 0.60 1.11 12.1%

generalisation of dates 0.11 0.64 0.31 1.06 11.5%

gender 0.11 0.64 0.30 1.05 11.4%

names 0.11 0.76 0.17 1.04 11.3%

Table 3 Compression rates of various schemes on the genealogical data

