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Motivation

Many applications need digital audio

e Business
= Internet call centers
= Multimedia presentations
< Communication
= Digital TV, Telephony (VolP) & teleconferencing
= Voice mail, voice annotations on e-mail, voice recording
= Entertainment
solid-state music players
150 songs on standard CD
thousands of songs on portable jukebox
Internet radio
Games
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“Sink coding”: Auditory Masking

Physiology of the ear

= Automatic gain control

= muscles around
transmission bones
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= auditory canal

Nonlinear processing
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= auditory nerve

- . EUSTACHIAN
Filter bank separation TUBE

= cochlea
Thousands of “microphones”

= hair cells in cochlea




Filter bank model
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Absolute threshold of hearing
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Block & Lapped Transforms

Block signal processing
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Signal is reconstructed as a
linear combination of basis functions




Block processing: good and bad

= Pro: allows adaptability

= Con: blocking artifacts

Why transforms?

= More efficient signal representation

= Frequency domain

= Basis functions ~ “typical” signal components
= Faster processing

= Filtering, compression
= Orthogonality

= Energy preservation

= Robustness to quantization




Compactness of representation

Maximum energy concentration in as few coefficients as
possible

For stationary random signals, the optimal basis is the
Karhunen-Loéve transform:

Aibi = RcPj, PTP=1

Basis functions are the columns of P

Minimum geometric mean of transform coefficient variances

Sub-optimal transforms

» KLT problems:
= Signal dependency

= P not factorable into sparse components

= Sinusoidal transforms:
= Asymptotically optimal for large blocks
= Frequency component interpretation

= Sparse factors - e.g. FFT




Lapped transforms

e Basis functions have tails beyond block boundaries
= Linear combinations of overlapping functions such as

= generate smooth signals, without blocking artifacts

Modulated lapped transforms

Basis functions = cosines modulating the same low-pass
(window) prototype h(n):

b (n) = h(n)\/%cos[(n + 'V'2+ lj(k +%)ﬁ}

Can be computed from the DCT or FFT

Projection X =PTX  can be computed in O(log, M)
operations per input point




Fast MLT computation
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Audio compression

Basic architecture
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Quantization of transform coefficients

< Quantization = rounding to nearest integer.

- Small range of integer values = fewer bits needed to
represent data

= Step size T controls range of integer values

y

are mapped ’_'frr y= T int(X / T)
to this value ——|
JJJJJ K X
all values

in this range ...

Encoding of quantized coefficients

« Typical plot of quantized transform coefficients

= Run-length + entropy coding
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Basic entropy coding

Value Codeword

- Huffman coding: less ! igigigigigim

frequent values have .

longer codewords *10101011°
"101011"
2 q . "1011"
More efficient if 01"
groups of values are 11-
assembled in a vector *00"

before coding iﬁfoo

"1010100"
"1010101011"
©101010101001"
"1010101010000"

Side information & more about EC

SI: model of frequency spectrum
= e.g. averages over subbands
Quantized spectral model determines weighting
= masking level used to scale coefficients
Backward adaptation reduces need for Sl
Run-length + Vector Huffman works
= Context-based AC can be better

= Room for better context models via machine
learning?




Improved architecture
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Examples of context modeling

= For strongly voiced segments, spectral energies
may be well predicted by a “Linear Prediction”
model, similar to those used in VoIP coders.

= For strongly periodic components, spectral energies
may be predicted by a pitch model.

= For noisy segments, a noise-only model may allow
for very coarse quantization - lower data rate.
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Other aspects & directions

- Stereo coding
= (L+R)/2 & L-R coding, expandable to multichannel
= Intensity + balance coding
= Mode switching — extra work for encoder only

» Lossless coding
= Easily achievable via integer transforms
= exactly reversible via integer arithmetic
= example: lifting-based MLT (see Refs)

= Using complex subband decompositions (MCLT)
= Potential for more sophisticated auditory models
= Efficient encoding is an open problem

Contents

Examples
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WMA examples:

= Original clip
(—~1,400 kbps) 64 kbps (MP3) 64 kbps (WMA)

= Original clip WMA @ 32 kbps
(Internet radio)

¢ &

- More examples at windowsmedia.com
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