
Lecture 2 – MapReduce:

Theory and

Implementation

CSE 490H

This presentation incorporates content licensed under the

Creative Commons Attribution 2.5 License.

Annoucements

� Assignment 1 available super-soon (will
post on mailing list)

� Start by reading version already on the
web

� “How to connect/configure” will change

�The “meat” of the assignment is ready

Brief Poll Questions

� Has everyone received an email on the
mailing list yet?

� What OS do you develop in?

� Do you plan on using the undergrad lab?

Two Major Sections

� Lisp/ML map/fold review

� MapReduce

Making Distributed Systems Easier

What do you think will be trickier in a
distributed setting?

Making Distributed Systems Easier

� Lazy convergence / eventual consistency

� Idempotence

� Straightforward partial restart

� Process isolation

Functional Programming Improves Modularity

�

�

�

�

�

�

�

�

�

Functional Programming Review

� Functional operations do not modify data
structures: They always create new ones

� Original data still exists in unmodified form

� Data flows are implicit in program design

� Order of operations does not matter

Functional Programming Review

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not
matter – they do not modify l

“Updates” Don’t Modify Structures

fun append(x, lst) =

let lst' = reverse lst in

reverse (x :: lst')

The append() function above reverses a list, adds a new

element to the front, and returns all of that, reversed,

which appends an item.

But it never modifies lst!

Functions Can Be Used As

Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its

argument; DoDouble() will do it twice.

What is the type of this function?

Map

map f lst: (’a->’b) -> (’a list) -> (’b list)

Creates a new list by applying f to each element

of the input list; returns output in order.

� � � � � �

Fold

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b

Moves across a list, applying f to each element

plus an accumulator. f returns the next

accumulator value, which is combined with the

next element of the list

fold left vs. fold right

� Order of list elements can be significant

� Fold left moves left-to-right across the list

� Fold right moves from right-to-left

SML Implementation:

fun foldl f a [] = a

| foldl f a (x::xs) = foldl f (f(x, a)) xs

fun foldr f a [] = a

| foldr f a (x::xs) = f(x, (foldr f a xs))

Example

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

How can we implement this?

Example (Solved)

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

fun sum(lst) = foldl (fn (x,a)=>x+a) 0 lst

fun mul(lst) = foldl (fn (x,a)=>x*a) 1 lst

fun length(lst) = foldl (fn (x,a)=>1+a) 0 lst

A More Complicated Fold Problem

� Given a list of numbers, how can we
generate a list of partial sums?

e.g.: [1, 4, 8, 3, 7, 9] �

[0, 1, 5, 13, 16, 23, 32]

A More Complicated Map Problem

� Given a list of words, can we: reverse the
letters in each word, and reverse the
whole list, so it all comes out backwards?

[“my”, “happy”, “cat”] -> [“tac”, “yppah”, “ym”]

map Implementation

� This implementation moves left-to-right
across the list, mapping elements one at a
time

� … But does it need to?

fun map f [] = []

| map f (x::xs) = (f x) :: (map f xs)

Implicit Parallelism In map

� In a purely functional setting, elements of a list

being computed by map cannot see the effects

of the computations on other elements

� If order of application of f to elements in list is

commutative, we can reorder or parallelize

execution

� This is the “secret” that MapReduce exploits

MapReduce

Motivation: Large Scale Data

Processing

� Want to process lots of data (> 1 TB)

� Want to parallelize across
hundreds/thousands of CPUs

� … Want to make this easy

MapReduce

� Automatic parallelization & distribution

� Fault-tolerant

� Provides status and monitoring tools

� Clean abstraction for programmers

Programming Model

� Borrows from functional programming

� Users implement interface of two
functions:

� map (in_key, in_value) ->

(out_key, intermediate_value) list

� reduce (out_key, intermediate_value list) ->

out_value list

map

� Records from the data source (lines out of
files, rows of a database, etc) are fed into
the map function as key*value pairs: e.g.,
(filename, line).

� map() produces one or more intermediate
values along with an output key from the
input.

map (in_key, in_value) ->

(out_key, intermediate_value) list

map

reduce

� After the map phase is over, all the
intermediate values for a given output key
are combined together into a list

� reduce() combines those intermediate
values into one or more final values for
that same output key

� (in practice, usually only one final value
per key)

Reduce

reduce (out_key, intermediate_value list) ->

out_value list

Parallelism

� map() functions run in parallel, creating
different intermediate values from different
input data sets

� reduce() functions also run in parallel,
each working on a different output key

� All values are processed independently

� Bottleneck: reduce phase can’t start until
map phase is completely finished.

Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += v;

Emit(result);

Example vs. Actual Source Code

� Example is written in pseudo-code

� Actual implementation is in C++, using a
MapReduce library

� Bindings for Python and Java exist via
interfaces

� True code is somewhat more involved
(defines how the input key/values are
divided up and accessed, etc.)

Locality

� Master program divvies up tasks based on
location of data: tries to have map() tasks
on same machine as physical file data, or
at least same rack

� map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

Fault Tolerance

� Master detects worker failures
�Re-executes completed & in-progress map()

tasks

�Re-executes in-progress reduce() tasks

� Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
�Effect: Can work around bugs in third-party

libraries!

Optimizations

� No reduce can start until map is complete:

�A single slow disk controller can rate-limit the

whole process

� Master redundantly executes “slow-
moving” map tasks; uses results of first
copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up

the total computation?

Combining Phase

� Run on mapper nodes after map phase

� “Mini-reduce,” only on local map output

� Used to save bandwidth before sending
data to full reducer

� Reducer can be combiner if commutative
& associative

Combiner, graphically

Word Count Example redux
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += v;

Emit(result);

Distributed “Tail Recursion”

� MapReduce doesn’t make infinite
scalability automatic.

� Is word count infinitely scalable? Why
(not)?

What About This?

UniqueValuesReducer(K key, iter<V> values) {

Set<V> seen = new HashSet<V>();

for (V val : values) {

if (!seen.contains(val)) {

seen.put(val);

emit (key, val);

}

}

}

A Scalable Implementation?

A Scalable Implementation

KeyifyMapper(K key, V val) {

emit ((key, val), 1);

}

IgnoreValuesCombiner(K key, iter<V> values) {

emit (key, 1);

}

UnkeyifyReducer(K key, iter<V> values) {

let (k', v') = key;

emit (k', v');

}

MapReduce Conclusions

� MapReduce has proven to be a useful

abstraction

� Greatly simplifies large-scale computations at

Google

� Functional programming paradigm can be

applied to large-scale applications

� Fun to use: focus on problem, let library deal w/

messy details

