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Annoucements

� Assignment 1 available super-soon (will 
post on mailing list)

� Start by reading version already on the 
web

� “How to connect/configure” will change

�The “meat” of the assignment is ready



Brief Poll Questions

� Has everyone received an email on the 
mailing list yet?

� What OS do you develop in?

� Do you plan on using the undergrad lab?



Two Major Sections

� Lisp/ML map/fold review

� MapReduce



Making Distributed Systems Easier

What do you think will be trickier in a 
distributed setting?



Making Distributed Systems Easier

� Lazy convergence / eventual consistency

� Idempotence

� Straightforward partial restart

� Process isolation



Functional Programming Improves Modularity

�

�

�

�

�

�

�

�

�



Functional Programming Review

� Functional operations do not modify data 
structures: They always create new ones 

� Original data still exists in unmodified form

� Data flows are implicit in program design

� Order of operations does not matter



Functional Programming Review

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not 
matter – they do not modify l



“Updates” Don’t Modify Structures

fun append(x, lst) =  

let lst' = reverse lst in

reverse ( x :: lst' )

The append() function above reverses a list, adds a new 

element to the front, and returns all of that, reversed, 

which appends an item. 

But it never modifies lst!



Functions Can Be Used As 

Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its 

argument; DoDouble() will do it twice.

What is the type of this function?



Map

map f lst: (’a->’b) -> (’a list) -> (’b list)

Creates a new list by applying f to each element 

of the input list; returns output in order.

� � � � � �



Fold

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b

Moves across a list, applying f to each element 

plus an accumulator. f returns the next 

accumulator value, which is combined with the 

next element of the list



fold left vs. fold right

� Order of list elements can be significant

� Fold left moves left-to-right across the list

� Fold right moves from right-to-left

SML Implementation:

fun foldl f a []      = a

| foldl f a (x::xs) = foldl f (f(x, a)) xs

fun foldr f a []      = a

| foldr f a (x::xs) = f(x, (foldr f a xs))



Example

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

How can we implement this?



Example (Solved)

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

fun sum(lst) = foldl (fn (x,a)=>x+a) 0 lst

fun mul(lst) = foldl (fn (x,a)=>x*a) 1 lst

fun length(lst) = foldl (fn (x,a)=>1+a) 0 lst



A More Complicated Fold Problem

� Given a list of numbers, how can we 
generate a list of partial sums?

e.g.:  [1, 4, 8, 3, 7, 9] �

[0, 1, 5, 13, 16, 23, 32]



A More Complicated Map Problem

� Given a list of words, can we: reverse the 
letters in each word, and reverse the 
whole list, so it all comes out backwards?

[“my”, “happy”, “cat”] -> [“tac”, “yppah”, “ym”]



map Implementation

� This implementation moves left-to-right 
across the list, mapping elements one at a 
time

� … But does it need to?

fun map f []      = []

| map f (x::xs) = (f x) :: (map f xs)



Implicit Parallelism In map

� In a purely functional setting, elements of a list 

being computed by map cannot see the effects 

of the computations on other elements

� If order of application of f to elements in list is 

commutative, we can reorder or parallelize 

execution

� This is the “secret” that MapReduce exploits



MapReduce



Motivation: Large Scale Data 

Processing

� Want to process lots of data ( > 1 TB)

� Want to parallelize across 
hundreds/thousands of CPUs

� … Want to make this easy



MapReduce

� Automatic parallelization & distribution

� Fault-tolerant

� Provides status and monitoring tools

� Clean abstraction for programmers



Programming Model

� Borrows from functional programming

� Users implement interface of two 
functions:

� map  (in_key, in_value) -> 

(out_key, intermediate_value) list

� reduce (out_key, intermediate_value list) ->

out_value list



map

� Records from the data source (lines out of 
files, rows of a database, etc) are fed into 
the map function as key*value pairs: e.g., 
(filename, line).

� map() produces one or more intermediate
values along with an output key from the 
input.



map  (in_key, in_value) -> 

(out_key, intermediate_value) list

map



reduce

� After the map phase is over, all the 
intermediate values for a given output key 
are combined together into a list

� reduce() combines those intermediate 
values into one or more final values for 
that same output key 

� (in practice, usually only one final value 
per key)



Reduce

reduce (out_key, intermediate_value list) ->

out_value list





Parallelism

� map() functions run in parallel, creating 
different intermediate values from different 
input data sets

� reduce() functions also run in parallel, 
each working on a different output key

� All values are processed independently

� Bottleneck: reduce phase can’t start until 
map phase is completely finished.



Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, 1); 

reduce(String output_key, Iterator<int> 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += v;

Emit(result); 



Example vs. Actual Source Code

� Example is written in pseudo-code

� Actual implementation is in C++, using a 
MapReduce library

� Bindings for Python and Java exist via 
interfaces

� True code is somewhat more involved 
(defines how the input key/values are 
divided up and accessed, etc.)



Locality

� Master program divvies up tasks based on 
location of data: tries to have map() tasks 
on same machine as physical file data, or 
at least same rack

� map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks



Fault Tolerance

� Master detects worker failures
�Re-executes completed & in-progress map() 

tasks

�Re-executes in-progress reduce() tasks

� Master notices particular input key/values 
cause crashes in map(), and skips those 
values on re-execution.
�Effect: Can work around bugs in third-party 

libraries!



Optimizations

� No reduce can start until map is complete:

�A single slow disk controller can rate-limit the 

whole process

� Master redundantly executes “slow-
moving” map tasks; uses results of first 
copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 

the total computation?



Combining Phase

� Run on mapper nodes after map phase

� “Mini-reduce,” only on local map output

� Used to save bandwidth before sending 
data to full reducer

� Reducer can be combiner if commutative 
& associative



Combiner, graphically



Word Count Example redux
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, 1); 

reduce(String output_key, Iterator<int> 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += v;

Emit(result); 



Distributed “Tail Recursion”

� MapReduce doesn’t make infinite 
scalability automatic.

� Is word count infinitely scalable? Why 
(not)?



What About This?

UniqueValuesReducer(K key, iter<V> values) {

Set<V> seen = new HashSet<V>();

for (V val : values) {

if (!seen.contains(val)) {

seen.put(val);

emit (key, val);

}

}

}



A Scalable Implementation?



A Scalable Implementation

KeyifyMapper(K key, V val) {

emit ((key, val), 1);

}

IgnoreValuesCombiner(K key, iter<V> values) {

emit (key, 1);

}

UnkeyifyReducer(K key, iter<V> values) {

let (k', v') = key;

emit (k', v');

}



MapReduce Conclusions

� MapReduce has proven to be a useful 

abstraction 

� Greatly simplifies large-scale computations at 

Google

� Functional programming paradigm can be 

applied to large-scale applications

� Fun to use: focus on problem, let library deal w/ 

messy details 


