
1

UW CSE 503 David Notkin ● Winter 2008 1

Debate: votes (some hanging chads)

42Empirical

111Crisis

Both/AbstainConPro

UW CSE 503 David Notkin ● Winter 2008 2

Key open questions: from you

• When manufacturing physical products, industrial processes require
constant monitoring and evaluation for quality control. A challenge to
doing this in a large-scale software development process project
because of expense, difficulty, or lack of availability. Are there methods
to instrument, characterize, and audit the processes and tools used to
provide suggestive, relevant, and timely feedback? Would freely
distributing quality tools like pre-fast/pre-fix (a la MS), improve quality
control? Can a framework for integrating suites of quality control tools
be built/distributed and mandated for acceptance?

• In the physical world, there are limitations of physical and materials that
limit how large a a structure can be. Is there a fundamental limit to the
size of a software project (code or people)? Consider the
"skyscrapers" of the software world -- the 50+M loc required for
Windows Vista and the 30+M loc found in the Red hat 7.1 linux distro
(2001). Though built with substantially different processes (open
source vs proprietary), they both reached the same order of magnitude
in size. Why and how was this possible? Do they achieve these
results because of some common techniques/processes, or are there
fundamentally different issues that allow software to reach that scale.

• Thus far our discussion and papers on software engineering has cited individual,
large, monolithic projects as examples of software engineering
marvels(/disasters). This seems analogous to physical engineering marvels
such as massive bridges, skyscrapers, and massive tunnels. Is software
engineering research efforts focused on programming projects and techniques
for dealing with a massive but distributed code base such as extremely
heterogeneous distributed situations (I'm thinking think of swarms of cell phones
interacting with rfids, motes, and other devices through pico networks).
Similarly, are there software engineering research efforts focused on massive
Google-like cloud computing infrastructures?

• Education, accreditations and certifications are suggested as mechanisms to
improve the practices of the software engineering discipline. This is true for
many professions such as civil and mechanical engineers (PE), medical doctors
(MD), lawyers (JDs), and accountants (CPAs).

• Interestingly, computer hardware engineering, an example cited during debate
as a industry with robust engineering practices, is an industry that like software
engineering does not require practitioners to have special accreditations. I posit
(from experience working in that industry) that this is because the financial and
liability risks involved with failure cause them to use conservative design
techniques.

• Is employing legal and liability incentives a mechanism that will force software
quality to improve? Would less innovating but conservative and robust designs
be capable of surviving the marketplace?

• What are the commonalities of successful software engineering methodologies?
Of these, which ones are actually productive traits vs. common bugs?

• When working toward process improvement, what metrics should a team
actually focus on? Is there a higher-level theory of how to improve a process?

• What is the proper place of analytical approaches toward software verification?
How can analytical approaches best augment or improve test-based
verification? Is it possible to fuse the two approaches in a "most effective"
manner?

• New SWEng methodologies often practice "test-driven development." Is this
leading us down a wrong path? Would "verification-driven development" make
any sense? Does test-driven development improperly deemphasize verification?

• Most software engineers by trade were computer science majors in
undergraduate years. Software engineering as a major (undergrad or masters)
is often looked down upon by those with CS degrees. Is this helping or harming
the quality of graduates sent into industry? Does a CS degree best qualify
someone to develop software? Do practices which go into CS curricula actually
hinder the development of software engineering skills in students?

2

UW CSE 503 David Notkin ● Winter 2008 5

• What makes software so hard and costly?
• Is software / software engineering in a crisis?
• Is it possible for software engineering to become a

standardized engineering discipline?
• Can software eventually achieve maturity? What are

the maturity criteria?
• How can we distinguish good software engineering

research from bad software engineering research?
Are there effective evaluation methods?

• One thing that both teams touched on was the large body of old code
that's still in service. How does the development of new standards and
approaches relate to modifying and extending that code? What is there
between the extremes of "Make it conform to new standards or rewrite
it" and "ignore it"?

• The kinds of software being developed do change quickly, and
sometimes in qualitative ways (such as the relatively new need for
efficient use of multi-core processors). Are there higher-level software
engineering research results that can apply across such changes (for
example, mechanisms for eliciting design requirements)? In what
categories *could* such results exist - management? Testing?

• For areas where high-level approaches aren't sufficient, such as
SWEBOK, what's a good model for rapidly modifying those
approaches? How does the need for rapid updating interact with the
pace of the industry in adopting new approaches?

• Is it really accurate to say that software development is necessarily
more of a craft than an engineering discipline? If so, does it follow that
it doesn't make sense to try to impose further order on the process?

UW CSE 503 David Notkin ● Winter 2008 7

• Development of effective tools to help Software Engineers
cope with changing requirements and better analyze, predict,
and control different properties of software systems

• Development of models for defining evolution of Software
Engineering to cope with changing requirements; i.e. Empirical
Software Engineering Research, etc

• Software engineering management methods to help better
predict and control quality, schedule, cost, cycle time and
productivity

• Theoretical efforts in defining software engineering processes.
For example, empirical software engineering research, etc.

• One interesting problem in software engineering today is that of processes used
to produce software. Specifically, I mean the question of how to arrange people
to produce good software. Recently, systems like agile development and its
descendants have been pushed as a good way to quickly produce working
software. However, such development methodologies have also been criticized
for their lack of strong planning and problems with applying them to the creation
of larger software systems, especially in comparison to older, heavier weight
methods like the spiral model. What the best model is varies from project to
project, but the creation of new models for software development that can strike
a balance between extremes is an open question.

• Another interesting question is that of methods for guaranteeing the correctness
of software. The De Millo et al. paper (Social Processes and Proofs of
Theorems and Programs) argues that formal mechanisms for this are not worth
pursuing. However, in the thirty years since the paper was written, vast
improvements have been made in the field. All sorts of static and dynamic
analyses have been introduced and studied. Many of these have resulted in
tools that are used to catch bugs and check the validity of existing programs.
However, many of these focus on simple, local properties. Although there exists
some work in guaranteeing program-wide properties, this is a place where there
is much opportunity for SE research.

• Another open question in software engineering is how to better apply empirical
techniques to computer science research. While slightly old,the Tichy et al.
paper discusses the paucity of experimental evaluations in the software world.
Such evaluations are at the heart of any hard science. It would be useful to be
able to better apply the lessons of science to computer science. However, to a
large extent, the culture of computer science is not set up to produce such
evaluations. How to best integrate them into computer science research is an
open research question.

3

• Having software verification as the research area, one important question I always ask is
that, programmers write programs and we verify that they are correct. This is usually a
developer-driven approach in which most of the time researchers in the verification side
must adapt to real world applications. My concern is how easy to develop strict guideline
that will contraint developers to write programs such that the correctness will be assured by
construction, and also how easy to make developers accept that. For example I would like to
develop such a guideline for concurrent programmer. This is also related to having
standards like coding conventions (which is actually forces readability and
comprehensibility).

• Another concern is that processes like CMM looks at the software from a very high point of
view. However, decisions about programs may require a deep look at the development
process. For example, how to assert that a program is ready to ship. Does following CMM
guidelines while developing the software guarantee that? But it requires deep measurement
about the actual program, properties of the software, features and complications of features,
even how a feature is implemented is important. I think there is a need to measure the
current status of a development project by lifting facts from the lowest level to the higher
levels to allow for example project managers to see in what maturity or how
ready/correct/complete etc. the program is.

• Following the discussion about empirical evaluation, there is clearly a need to extend the
domains in which standard benchmarks are used to evaluate how good a newly developed
analysis method is. For example, in the domain of satisfiability solving (SAT) there are quite
many standard benchmarks, even competitions so that you can easily convince people from
that area by using these benchmarks that your new SAT solver is really worth to consider.
There are also benchmarks for data races, concurrency analsis. The question is how
possible it is to come up with standard benchmarks and in which areas. Is it possible to have
benchmarks for test case generation? or to measure how convenient a source code
configuration method is (by having a complicated program and its many revisions etc.)

• An interesting question I always wondered is that, is it possible to have a tool
that watches the software development process, especially in the programming
level, and give alarms about different kinds of problems that might happen. For
example, imagine that a tool may have a set of parameters to watch the source
code that is committed to CVS, and measures something like how deep the
function calls are, how high the inheritance tree is, or somehow to measure the
coherence properties of modules etc. and warn the program like "DAAAT
DAAAT this code is reached the maximum level in which objects depend to each
other", or "now you need to test your program because you changed this many
number of functions" etc. A mythical research but seemed always interesting to
me. I know one tool if I remember its name correctly "CodeCop" at Microsoft that
is integrated into Visual Studio and give warnings about different kinds of errors.
This would be a good way to constraint programmers about strict rules of
development strategy of a company, as Microsoft does.

• I have also a social question. In many kinds of job advertisements, the
requirements are too vague and general. In fact in many of they only list the
programming languages that the people applying for the job must know. A
standard and detailed way of describing the qualifications for a software project
would be good. This is because nowadays there are very different kinds of
software projects, ranging from embedded software projects to large business
applications. For example, how would you describe a programmer of software
engineer that you want for writing an embedded software. Is it possible or does it
make sense to list a of data structures he should know or low level programming
capabilities. This leads to a question may be for more specializing software
engineers, is it a standard description of a embedded software developer that
every body accepts and you can just put that words in the advertisement?

UW CSE 503 David Notkin ● Winter 2008 11

• (Personnel) How to manage and coordinate programmers with
different academic backgrounds and programming experiences
in a big project?

• (Productivity) How to speedup the productivity of software
engineering, especially catching up with the speed of hardware?
How to popularize ideas such as graphical programming and
automatic programming?

• (Verification) What is the best way to test a software? Should we
concentrate our testing on common cases, or boundary and rare
cases? Can we use techniques such as machine learning to
generate test samples?

• (Maintenance) Shall we write a program as general as possible
at first in order to handle changing requirements in the future, or
shall we write a program as specific as possible in order to cut
down the development cost? How to reuse programs written by
others who have completely different programming styles?

UW CSE 503 David Notkin ● Winter 2008 12

• How much are formal methods used in evaluating software
engineering research? How effective are they when used? How
well do these formal methods reflect the real world?

• How does the current education affect the way developers write
software? Is there any real difference on average?

• What are the most causes of critical Software failures? If we can
understand this, we do research in the direction that will address
those causes.

• If a programmer were to pick up a new technique or new
language, what are the factors that he/she would consider?

4

• How much of the success of building and shipping products is
attributable to tools & process rather than to personality, group
dynamics, or organizational structure? Do tools & process matter?

• If we were to design a new tool or process, what tool, and what part of
the process will have the most impact? What area is currently most
underserved in the development cycle? How and is it possible to
measure these things?

• What social factors - personality, experience, group dynamics etc are
most important in what sort of projects? How can you measure these
things?

• What is the right mix of dev/test/PM/architect skills for a given project?
• Is there a time, and if so when is the best time in a software lifecycle to

scrap the current code base & start fresh? That is to say, if only I knew
then what I know now! When is it too late?

• Is there an indicator test at the individual or group or corporate level
(GRE, past experience) that predicts successful project completion,
bugs, maintenance, budget, etc?

• Law firms have a useful informal label for the roles attorneys assume
as they progress in their careers- Grinders, Finders & Minders. Is there
a similar progression for software engineers, is it useful?

UW CSE 503 David Notkin ● Winter 2008 14

• Can software engineering help exploit multi-core
architectures?

• Can better techniques be developed for time/budget
estimation? This currently seems to be a guessing
game we are bad at.

• How can we measure good programmers, if a body
of knowledge cannot be formulated? Determining
who is skilled at a craft is generally done by
reputation. The scale of the software industry makes
this difficult.

UW CSE 503 David Notkin ● Winter 2008 15

Software Design

• What is the first
amazon.com hit found, in
books, by searching for
“software design”?

• Is this book in the top 10,
100, 1000, 10,000,
100,000 or 500,000 on
the Amazon sales rank
list (as of 1/25/08)? #828#828#828

UW CSE 503 David Notkin ● Winter 2008 16

Desirable characteristics

• Correctness
• Feasibility
• Extensibility
• Robustness
• Reliability
• Safety
• Fault-tolerance
• Security
• Maintainability
• Understandability
• Compatibility
• Modularity
• Reuse
• Testability
• …

5

6

UW CSE 503 David Notkin ● Winter 2008 23

Generic but important reminders

• Risk reduction is often a major influence on design
decisions

• Conceptual integrity has core value
• Just as Perlis said, “One man's constant is another

man's variable.” – “One person’s implementation is
another person’s design.”

UW CSE 503 David Notkin ● Winter 2008 24

Perlis: “If a listener nods his head when you're
explaining your program, wake him up.”

• So goes design
• Making good design decisions requires clarity of

thought, which in turn benefits from clarity of notation
• This is not a plea for UML or any other specific

design notation (and there are tons)
• Rather, it’s what it says it is – a plea for clarity

– Let’s look back at some of the design images from
earlier

• noto bene: there are surely times where sketchy
ideas are of value – and it is surely important to
distinguish if and when this is important

7

Clarity

• What’s a box?
• What’s an arrow?
• What’s a module?
• What’s a layer? Or a level? Or a tier?
• What does it mean to perform an external operation

(such as “turn off furnace” or “launch missile”)?
• What do correctness, feasibility, extensibility,

robustness … and so on mean in a given context?
• …
• … and more, more, more!

