
There is no software engineering crisis

Alex Colburn Jonathan Hsieh Matthew Kehrt Aaron Kimball

January 16, 2008

Introduction

There is no software engineering crisis. In order to determine what is meant by the phrase
“software engineering crisis,” it is informative to define both the term crisis and the term
software engineering. We define crisis to mean a “crucial or decisive point or situation; a
turning point.” [1] While not part of the definition, the usual connotation of a crisis further
implies an impending disaster as a result doing nothing or making the wrong choices. The
IEEE defines software engineering as “the application of a systematic, disciplined, quan-
tifiable approach to the development, operation, and maintenance of software” [3]. When
considering the complete phrase “software engineering crisis,” it is also helpful to consider
the historical context of the term and its subsequently use. We ask is software engineering
really at a turning point? Are there dire consequences if we make the wrong choice on how
to proceed? To answer these questions we consider the “software crisis” described in 1968 by
NATO. We note that we are not currently in the same “software crisis”, or for that matter,
any subsequent crisis. We also debunk the claims that we are in the midst of a perpetual
and “chronic software crisis.” by considering the major categories of historical crisis claims.
We conclude that the ever-increasing capabilities, ambitions, and expectations placed upon
software and software engineers are not signs of a crippling crisis but a natural by-product
of healthy exploration and evolution of increasingly improved software.

The Crisis of 1968

If we are in the midst of a “software crisis” today, it is surely a different one than what
was described when the term was first coined and debated in 1968. Discussions at the
NATO Software Engineering Conference specifically lamented the difficulties in predictably
producing correct, understandable, and verifiable computer programs. [5] The result of the
debate and following meeting in 1969 created a field that would be the long-term antidote
to the crisis: software engineering. To use a medical analogy, they finally had a diagnosis,
and realized then that addressing the problems would require a “lifestyle-change” approach
as opposed to hoping for a breakthrough panacea that addresses individual symptoms. One

1



could truly claim that this was the turning point that identified the root of the difficulties
in building software products.

Even during the conference, the use of the term “software crisis” was criticized. Kolence
stated:

I do not like the use of the word crisis. Its a very emotional word. The basic
problem is that certain classes of systems are placing demands on us which are
beyond our capabilities and our theories and methods of design and production
at this time. There are many areas where there is no such thing as a crisis
sort routines, payroll applications, for example. It is large systems that are
encountering great difficulties. We should not expect the production of such
systems to be easy. [5]

This comment makes two key points: first that there are areas that are considered solved,
and second is that pushing past the previously known boundaries will always incur new
difficulties.

A Chronic Software Crisis?

Could software engineering really be in a state of crisis for the past forty years? Are we in
a “chronic software crisis”? [2] We believe not.

Throughout the decades there have been a series of problems that have successively been
handled and integrated from research into industrial best practices. The history of the
software engineering crises takes on different focuses: the inability to build large software
systems, the inability to budget and schedule, the lack of productivity and the quality of
software. We believe that many of these problems have been solved today, and turned
difficult problems in the past into mundane problems today. Any remaining problems are
not crises, but a sign of an active and vibrant field. Any crisis that may have existed in
1968 has been resolved by vast improvements in maturity of techniques for managing large
software projects, which has led to higher levels of productivity in production of code and
to higher quality code.

Maturity

Today, computing is still considered a young field; in 1968 it was merely in its infancy.
Many of the systems we take for granted today could not even have been conceived of back
then. At the time there were many systems they wanted to build but could not. Every
project required new exploration and research efforts but were being sold as production
jobs. Building software was a craft where every developer not only created the end product,
but often created their own tools to aid in its construction.

For example, d’Agapeyeff discusses how developers could not trust the file handling
routines provided by the manufacturer’s control program. [2] Programmers had to rewrite
them to suit their application better. Today we would call this the operating system API.

2



While there is active research in the area, very few people roll their own file system – the
overwhelming majority trust and use the mature routines that are provided. Claiming that
we are in the same software crisis today as faced at the NATO conference is absurd. While
there are difficulties when developing large software systems, there is a multi-billion dollar
industry that reliably produces robust computer programs, improves existing programs and
maintains them.

Similarly, we also have the tools for managing large scale software projects The SWE-
BOK project has published hundreds of pages on the modern body of software engineering
knowledge. [3] They categorize large amounts of knowledge of mechanisms for producing
large software projects. There is evidence that successful software development processes
and project management can and has been duplicated in other environments. One exam-
ple is Motorola’s CMM5 compliant team in India [2]. Though not perfect, it has shown
improvements in process, and seems to be duplicable.

With such tools, we can handle scale; the multitude of massive complex and successful
pieces of software demonstrates this. Examples include operating systems like MS Vista,
and large suites of office applications. The IBM 360 had 20M lines of code, more recently
Vista has 50+ million lines of code. There are only a small number of projects at this scale;
these are large, risky pieces of software. Moreover, these projects have had problems with
delays and budget overruns. These projects, however, are orders of magnitude larger and
more complex than the majority of projects. In any field, increasing orders of magnitude
cause existing techniques to break down. Projects of this nature would only be pursued if
the reward were worth the effort. Lessons learned from these experiences gradually improve
the prospects for future projects. This an evolutionary change, not a acute change due to a
crisis.

Productivity

Over the past four decades, software has become ubiquitous, and our reliance on it has
increased dramatically. In large part, this is because we have been able to produce very
large amounts of it. In forty years, we have solved many problems which has in turn given
us a plethora of tools that reduce the amount or work required to construct software. Difficult
or error-prone tasks are encapsulated into these tools and have resulted in greatly increased
productivity. Developing any solution always starts with building better tools. When we
cannot make them better we can then focus on building with better methods.

For example, designing GUIs was once an arcane discipline but was simplified with the
advent of RAD tools and later almost trivialized with HTML and JavaScript. At one point,
building 3-tiered database-backed distributed applications was considered a large and difficult
project prone to failure. At first this required building custom servers and clients, but later
became simplified with HTTP/CGI, further simplified with servlet-like technologies, and
almost trivialized with today’s frameworks such as Ruby and Django. Each successive set of
tools reduced the amount of work required by an order of magnitude. This improvement is
not a sign of crisis: it is a sign of progress.

3



Quality

In 1969, the conference members shuddered to think about systems where software could
be potentially life threatening. Today we have many systems such as fly-by-wire and med-
ical devices that have life or death implications. This coincides with what seems to be a
recent emphasis on problems of quality and security of software systems. Software is in fact
ubiquitous – today’s society would cease to function if all software were removed. Some
companies trust software enough use it to trade billions of dollars. [4] This must mean that
software development has actually become robust enough that it can be trusted in situations
of potentially extreme danger or difficulty.

One could claim that Y2K was a software crisis due to difficulties of software engineering.
In fact, the public was fed an tale of impending Armageddon due to Y2K-related computer
glitches. On January 1, 2000, we woke up to find that the world had not descended into chaos.
This non-occurrence shows two things. First that software practices allowed people to fix
or mitigate the problems that existed. Second, it shows that software and the engineering
practices used to build these programs were more robust than initially perceived. This
crisis only existed because existing software was robust enough that it outlived its perceived
lifetime!

There are many examples of long-running large-scale software systems. The SABRE
airline reservation system built in the 70’s still lives today, as do many of the early payroll
systems. In fact, much code is reused – using techniques that include encapsulation of legacy
programs, libraries. Even the open source movement encapsulates lessons learned and gives
new development efforts a more stable base to build upon. Even if problems exist in new
code, techniques such as automated software updates have become possible, and are accepted
and deployed on millions of devices.

Shifting Expectations

Overall, the state of software engineering has greatly improved since 1968. We can now
reliably produce programs that would be inconceivable even a decade ago. The impression
of a software engineering crisis is due to constantly increasing and shifting expectations.
Every time a challenge is met, a new one appears. After the 1968 crisis, the productivity
crisis, and Y2K crisis and the Internet crisis, we will likely find yet another problem branded
as “a crisis.” As successes become routine and initially difficult tasks become nearly trivial,
ambitions for software engineering projects are set ever higher. As confidence increases and
success rates improve, the specter of another “software engineering crisis” rears its head
because of expectations that are too high.

One issue is that we have the ability to integrate new research into production systems
without fully exploring all the consequences. We are still exploring the design space for
many of the systems that are being built. Many large efforts are unique engineering efforts
as opposed to incremental updates on prior work. This ability to continually improve software
gives us constant discomfort. We are not in a crisis – if anything, it is a problem of managing

4



expectations.

Conclusion

We argue that there is no crisis in software engineering. The 1968 NATO conference discussed
the so-called “software crisis” of the time. It is debatable that such a crisis existed at the time,
but it is certain that such a crisis has not persisted for four decades. The past four decades
have seen immense improvements in the state of software engineering, making it impossible
to say that any crisis that may have existed still exists now. Improvements in techniques for
managing software projects have lead to improvements in productivity of software creators
and to improvements in the created software. Any apparent crisis in software engineering
today is due merely to the volatile nature of the modern software industry, but this is more
an indicator of the health of the industry than of any problem.

References

[1] The American Heritage Dictionary of the English Language, Fourth Edition. Houghton
Mifflin Company, 2004.
[2] W. Wayt Gibbs. “Software’s Chronic Crisis”, Scientific American, September 1994.
[3] SWEBOK Guide, 2004 version.
[4] Y. Minsky. Caml Trading. In Proc. POPL, 2008
[5] P. Naur and B. Randell, (Eds.). Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific
Affairs Division, NATO, 1969.

5


