
Software Engineering is indeed in a crisis
Michael Buettner, Peng Dai, Suporn Pongnumkul, Richa Prasad

The IEEE defines software engineering as, "The application of a systematic,

disciplined, quantifiable approach to the development, operation, and

maintenance of software; that is, the application of engineering to software." As

software is the result of software engineering, if software is in crisis then

software engineering itself is in crisis. We argue that software engineering is

indeed in crisis, as it has failed to significantly mitigate the "software crisis" of

the 1980s which was characterized by over-budget and over-time projects of low

quality. Additionally, as the problems of software are fundamentally insoluble

using the techniques of engineering, software engineering will continue to

resemble a craft more than an engineering discipline and we can expect no

significant change from the current state of the industry.

1. Software in Crisis

When it comes to large scale software development, the statement: "Good, fast,

cheap - choose two," is often woefully optimistic. According to Jim Johnson, the

founder and chairman of the Standish Group, "People know that the more common

scenario in our industry is still: over budget, over time, and with fewer features than

planned." The 2004 Standish CHAOS report, which researches the reasons for IT

project failure in the United States, shows that 18% of software projects fail, 29%

succeed, and 53% are "challenged". While absolute numbers such as these have

limited value, a comparison of yearly CHAOS reports shows that while projects have

become more successful, the problems that characterized the "software crisis" of the

1980s are still the common case. In addition, the number of successful projects, and

the number of projects that are over-budget and over time (about 50% and 80%

respectively), has remained relatively constant from 1998-2004 [1]. This suggests

that the beneficial impact of software engineering innovation has leveled off. As

projects are increasing in complexity, simply holding our ground with respect to

failures is admirable. However, with multi-core technologies poised to pull the rug

from under our traditional programming paradigms, software engineering may find

itself unable to maintain even this modest feat.

Due to the physical limitations of transistor density in single core processors, higher

computation power in the future is expected from multi-core processors. However,

we are currently ill-equipped to make use of this parallelism. While software written

for a single processor can expect a performance increase proportional to the future

increase in processor speed, this is not the case with an increase in the number of

cores in a processor. In [2], Lee asserts that threads, the current method of

concurrent programming, will be unable to exploit the parallelism of multi-core

systems. In effect, he states that nothing short of an entirely new concurrent

coordination language will allow us to make use of these advancements in

architecture. Unfortunately, this language is as of yet unnamed and un-described,

while multi-core processors are already on our desks. Further evidence that we will

be unable to exploit the increase in processor cores is shown in [3], where the

authors port Linux to 16 and 32 core architectures that use transactional memory,

which has been touted as a solution for providing concurrency in multi-core systems.

The results of the study show that performance was on par with a single processor

system as the synchronization costs dominated with increasing number of cores. The

situation will be worsened by the fact that chip manufacturers plan to scale to over

1000 cores in the coming years.

If there was in fact a software crisis during the 1980s, then the state of software is

still in crisis as projects are still over-budget, over time, and of low quality. Consider

Microsoft Vista as the quintessential case [14][15][16][17]. While we rarely hear

about the software crisis today, this is due to a change of terminology and not a

change in situation.

2. Failure of Current Software Engineering Practices

Since software engineering is the process by which software is produced, it stands to

reason that a critical analysis needs to be performed of current software engineering

practices in order to solve the software crisis. In fact, it is common knowledge that

there is widespread observance of poor software engineering practices. For instance,

most software developers do not adhere to even the basic models in place to cope

with changing design requirements. Lack of unit-tests, global variable usage, and

undocumented code are some of the poor practices that guarantee bug-ridden

software. It is also true that often the requirement specification for new software is

not very clear; such as when the software is to help create new markets. In such

scenarios, it is inevitable for the design to be imprecise, which may lead to errors in

code depending on how far the software development process has progressed. The

lack of well documented, formal processes in software engineering has led to

developer-specific code, which is difficult to transition to a new software engineer,

thus creating problems in its maintenance and reuse in new software.

There are three main aspects of software engineering that garner scrutiny:

1. Software Developers
2. Innovation of Tools and Models
3. Currently used Tools and Models

2.1 Software Developers

In his book, Software Engineering Economics, Barry Boehm argues that individual

and team productivity is the leading predictor of software costs; it's twice as

significant as product complexity [12]. Software companies have long complained of

the lack of good software engineers. This may be due to the fact that in software

engineering, unlike most other engineering disciplines, it is more common for

software engineers to have disparate educational backgrounds; from no formal

training to a doctorate in the subject. Thus, there is no guarantee of a reasonable

level of competence and homogeneity among software engineers in their approach to

developing software.

There is also the issue that it is not sufficient for only individuals intending to pursue

software engineering as a career to demonstrate a formal background in the field.

Today, many companies in niche fields, such as Boeing in aerospace engineering, let

engineers from a non-software engineering background develop their software. They

fail to realize that while it may be relatively easy to write software, it is very hard to

write good software – bug-free, extensible, easily maintainable software. A

consequence of this has been a large contribution to the increasing mound of bad

software.

If we consider the former situation from the opposite perspective, we note that the

demands on software engineers are unique in that they are often required to produce

software for fields that are beyond their area of expertise. For instance, companies in

the medicine and business domains are two significant recruiters of software

engineers. This often leads to software developers learning the requirements along

the development process and probably never being truly aware of all possible

boundary conditions beforehand. Thus, it is inevitable for the final product to be bug-

ridden, behind schedule, and over-budget.

Besides the lack of a formal background among all software engineers and the

interdisciplinary nature of software engineering, another issue to ponder is whether

the education provided in the field is adequate [13]. Firstly, computer science

students adopt an ad-hoc approach to software engineering from early on since the

formal software engineering courses occur at a much later stage in the curriculum, if

at all. The adage of “Old habits die hard” fits well here. Secondly, often computer

science courses are extremely product oriented with little or no emphasis on the

software engineering process. For instance, the focus is usually on whether the ‘best’

algorithm was used to create an efficient working final software. While this is

important, it is also vital for students to learn the value of understanding the

software process from the beginning to the end and beyond. Students need to be

aware of the relation between good software engineering practices and good

software. The inadequacy of software engineering education is not contained to

universities alone since the computer science graduates enter the workforce with the

same poor practices.

2.2 Innovation of Tools and Models

Innovation in the field of software engineering has been rapid due to the urgent need

to solve the software crisis. Many software tools and models have been invented

such as Object Oriented Programming, Structured Programming, Expert

Programming to name a few. Despite this seemingly quick generation of useful

solutions, in 1985, Redwine and Riddle [4] found that “it takes on the order of 15 to

20 years to mature a technology to the point that it can be popularized and

disseminated to the technical community at large.” This could be due to two potential

reasons: the intransigence of the practitioners, and the irrelevance of the innovation.

We can easily see that adopting a new technology involves high overhead cost but it

is not necessary for all software development processes to pay such a high cost. One

would especially hope that high security and correctness critical areas would be more

willing to adopt new software engineering tools and practices because of their

sensitive nature. This is in fact far from the truth as study [5] shows that even in

medical applications, software engineering tools and principals are not being applied

much, which indicates the reluctance of programmers to adopt new software

engineering tools.

As for the relevance of research, Potts [6] explained, in 1993, that the limited impact

of software engineering research on the real world is caused by the research-then-

transfer model, where research is done in a research lab and by researchers who do

not possess industry experience. He proposed that software engineering research

should be industry-as-laboratory. Even though there is more industry-as-laboratory

research since then, Fichman and Kemerer's study [7] in 1999 indicates that the

‘assimilation gap’ between the first acquisition of a new technology and its 25%

penetration into software development organizations is found to be 9 years for

relational databases, 12 years for Fourth Generation Languages, and a much longer

period for computer aided software engineering (CASE) tools. Therefore, to date,

both - intransigence of practitioners and irrelevance of innovation - are causing slow

software engineering technology transfers. It is also alarming to note that there have

been few, if any, studies on the causes of slow transfer of technology.

2.3 Currently used Tools and Models

There is a plethora of tools and models currently available for software engineers to

use. Some of the directions in which software engineering is developing include [18]:

1. Aspect-oriented programming
• Aim: Developing new languages for more systematic programming

• Criticism: Inherent ability to create unpredictable and widespread errors.

Slow learning curve

2. Agile software development
• Aim: Emphasizes development iterations throughout the life-cycle of the

project

• Criticism: Only useful when practiced by programmers of above average

capability. Increases likelihood of scope creep.

3. Experimental software engineering
• Aim: Scientific attempts to understand software by doing experiments on

them

• Criticism: Results of any one study cannot simply be extrapolated to all

environments because there are many uncontrollable sources of variation

between different environments [19]

4. Model Driven Software Development
• Aim: Code generation from models

• Criticism: Cost and feedback process are some of the issues seen in models

such as the Waterfall Model or Spiral Model

5. Software Product Lines
• Aim: Emphasizes extensive, systematic, formal code reuse

• Criticism: Assumes all products neatly fit into a product line

As a result none of these ideas have been widely accepted. This has lead to many

great ideas and tools that are not used in practice, because none of them have

proven to be significantly useful.

One might argue that high-level programming languages greatly decrease the

complexity of programming. It is true that high-level languages make complex

programming easier. However, the languages themselves are not a solution [8].

Although they help break a complex problem into pieces, the sub-problems

themselves can still be quite complex. Today we have an increasing number of

advanced high-level languages, but the situation has not changed significantly.

Object-oriented programming is an old idea, but it was not until the last decade that

it is has become popular. Its real contribution to ameliorating the software crisis is in

removing difficulties from design expressions, where there is only limited

functionality due to the small portion of type-related issues.

Automatic programming and graphical programming are two realistic and popular

ideas. However, they are no more than good pictures. For example, it is extremely

hard to characterize a problem with few parameters, which is the requirement of

automatic programming. The lack of existing sub-solutions is another problem of

automatic programming, and it is not trivial to simply reuse an existing solution due

to the variance of requirements, hardware constraints, etc. The problem of graphical

programming software is the difficulty in describing a program completely via

diagrams, as many programs do not land themselves to complete description via

graphical modeling languages.

3. Possibility of Good Software Engineering

3.1 Software Engineering is not Engineering

Unlike engineering disciplines such as hardware engineering, which have set

procedures for arriving at a solution, software engineering takes on a more ad-hoc

approach. Software developers often rely on their talents and skills and usually

mature to have a unique coding style. On the other hand, they also need to

emphasize reproducible, quantifiable techniques – a requirement of any engineering

discipline. It is this divergence between approach and targeted outcome which is

responsible for much of the failure of software engineering.

The question then arises whether we can make software engineering more like other

engineering disciplines. In order to do so, we would have to discard all adhocracy.

This means that we could no longer simply add or remove parts of the code

according to changing requirements, but instead would produce entirely new pieces

of software for each enhancement. Management would have to restrain itself from

pushing developers at the last minute to release software that takes advantage of

new hardware architectures. Besides the unreality of such an approach, it is unlikely

that bug-free, all requirements met, and on-budget software would be produced.

Thus, software development is unlikely to ever morph into a strict engineering

discipline.

3.2 Software Engineering is not Mathematics

One line of work in software engineering that hopes to make software engineering

more like mathematics is formal methods and verification. Ideally, program

verification will give users confidence that the programs have certain properties and

will not fail. However, even published mathematical proofs can be wrong as evident

in cases where the proof was believed for a decade before someone found a fatal

flaw, or when two proofs are contradictory but neither can be discredited [9]. The

mathematics proofs, however, can be read, and the mathematician community as a

whole gradually verifies the proofs and correct mistakes. This process allows people

to believe in the outcome of mathematics. Nevertheless, this is not the case in

software verification. The verification cannot be read and you either blindly believe it,

or do not believe in it. Therefore, formal verification cannot serve the same purpose

for software engineering as proofs do for mathematics.

3.3 Software Engineering Cannot Be Codified

SWEBOK[10], a recent effort by the ACM that tries to solve the software quality

problem by improving the competency of software developers. It was intended to

provide a body of knowledge for the industry, and software engineers could then be

certified based on that minimum set of knowledge. This seemingly

workable approach failed finally due to the complexity in the software development

behavior itself. For example, there is no general agreement upon essential

knowledge for programmers. It is also hard to quantify the requirements of different

roles in a software development team. In [11], the authors state that even a

conceptually clear and generally accepted organizing principle is lacking for a

software engineering body of knowledge, and is unlikely to exist any time soon. In

effect, software engineering techniques cannot be resolved into a defined set of

principles in the same manner as techniques of other engineering disciplines.

4. Conclusion

The current state of software, while measurably better than during the so called

crisis of the 1980s, is still plagued with problems. It appears that the easiest solution

is to double our budget and time estimates. However, the problem of quality may

not be so easily remedied. In particular, the emergence of highly parallel multi-core

processors will challenge the way in which we must think about, and abstract,

software problems. Currently, there is not only no silver bullet for this problem, there

are no clear roads forward for addressing this paradigm shift.

Ignoring the imminent problem of parallelism, the current practices of software

engineering have failed to produce real solutions for creating on-time, in budget,

quality software. This is partly due to software engineers not making use of the best

practices, but also is caused by the slow transfer of software engineering techniques

from research into industry. However, even those techniques that have come into

prominence, such as high level programming languages and graphical modeling

techniques, have not resulted in rapid and error free software.

The underlying reason for the limited ability of software engineering techniques to

solve the problem of creating good software is that software is not reducible by

traditional mathematical or engineering techniques. The large input state space and

internal complexity of software results in software engineering being more of a craft

than an engineering discipline. While crafts can surely be done well, the skills

necessary for this can only be learned over time and in a relatively ad-hoc manner.

Consequently, universities will never be able to graduate good software engineers as

if from a cookie cutter, and the software crisis is unlikely to change in anything more

than name.

5. Bibliography

[1] Deborah Hartmann. "Interview: Jim Johnson of the Standish Group", InfoQ. Aug

25, 2006. <http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS>

[2] Edward A. Lee. The Problem with Threads. Technical Report UCB/EECS- 2006-1,

EECS Department, University of California, Berkeley, January 10 2006.

[3] CJ Rossbach, OS Hofman, DE Porter, HE Ramadan, A Bhandari, E Witchel,

"TxLinux: Using and Managing Hardware Transactional Memory in an Operating

System", SOSP, 2007.

[4] S. Redwine and W. Riddle , Software technology maturation. Proceedings of the

8th International Conference on Software Engineering, London (1985), pp. 189–200.

[5] Christian Denger and Raimund L. Feldmann and Martin Höst and Christin

Lindholm and Forrest Shull. "A Snapshot of the State of Practice in Software

Development for Medical Devices" ESEM, IEEE Computer Society Press, 2007, pp.

485-487

[6] C. Potts, Software Engineering Research Revisited, IEEE Software, September,

1993, pp. 19-28.

[7] R.G. Fichman and C.F. Kemerer , The illusory diffusion of innovation: an

examination of assimilation gaps. Information Systems Research Sept (1999).

[8] Fredrick P. Brooks, Jr. "No Silver Bullet: Essence and Accidents of Software

Engineering", Computer, April 1987. This is also found in Brooks' Mythical Man-

Month (25th Anniversary Edition).

[9] De Millo, R. A., Lipton, R. J., and Perlis, A. J. Social processes and proofs of

theorems and programs. Commun. ACM 22, 5 (May. 1979), 271-280.

[10] A. Abran, J.W. Moore, P. Bourque, R. Dupuis and L.L. Tripp, Guide to the

Software Engineering Body of Knowledge (SWEBOK), Version 1.00, IEEE Computer

Society Press, Los Amitos, CA, USA (2001).

[11] David Notkin, Michael Gorlick, Mary Shaw. "An Assessment of Software

Engineering Body of Knowledge Efforts", A Report to the ACM Council (May 2000).

[12] Dianna Mullet. "The Software Crisis", University of North Texas. Feb 12, 2007.

<http://www.unt.edu/benchmarks/archives/1999/july99/crisis.htm>

[13] Bruce F. Webster. "The Real Software Crisis", BYTE. Jan 1996.

<http://www.byte.com/art/9601/sec15/art1.htm>

[14] Gregg Keizer. "Is Windows = st1 />= ST1 />Vista Slower than Windows XP",

The Guardian. Dec 6 2007.

<http://www.guardian.co.uk/technology/2007/dec/06/microsoft>

[15] Fuad Abazovic. “Vista gaming will be 10 to 15 per cent slower than XP”. The

Inquirer. Oct 7, 2006.

<http://www.theinquirer.net/en/inquirer/news/2006/10/07/vista-gaming-will-be-10-

to-15-per-cent-slower-than-xp>

[16] Suzanne Tindal. “Windows XP outshines Vista in benchmarking test”. CNET

News. Nov 27, 2007. <http://www.news.com/Windows-XP-outshines-Vista-in-

benchmarking-test/2100-1016_3-6220201.html>

[17] "Testers: Updated Windows Vista still slower than Windows XP". Fox News. Nov

30, 2007. <http://www.foxnews.com/story/0,2933,314141,00.html>

[18] "Software Engineering:: Current Trends in Software Engineering". Wikipedia.

<http://en.wikipedia.org/wiki/Software_engineering>

[19] Forrest Shull et. al. "Knowledge Sharing Issues in Experimental Software

Engineering". Empricial Software Engineering. Oct 28, 2004.

