An Argument for the Non-Empirical
Analysis of Software Engineering Research

Gyanit Singh & Cynthia Matuszek

{gyanit|cynthia}@cs.washington.edu
1 Claims and Terminology

Software engineering, or SE, is defined as ‘the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software’ [Abran 2001] – in other words, the discipline of developing software in an understood, reliable fashion. Software Engineering Research is the field of study that is concerned with improving our understanding of what constitutes ‘good’ software engineering, and thus improving the tools and methodologies that allow software engineers to systematically and consistently develop software that is robust, meets users’ expectations and needs, and is developed within predictable time frames and resource constraints. Because software engineering is a research field in which the development and exchange of ideas is itself a critical component, we follow [Shaw 2003] in considering research papers to be results in themselves; it is also important to note that the field of software engineering covers not only software, but also the “human factors” in the development of software. For example, a proposed model for obtaining well-specified requirements is clearly an SER result worth evaluation.

The value of software engineering results may (and, we argue, sometimes must) be established in a number of different ways. Results can be established qualitatively, by providing an informal analysis of an approach with respect to another well-understood approach; through empirical study of software systems or the software development process; or through formal analysis.
 In this paper, we argue that all four of these evaluation types have a role to play in effective software engineering research. Empirical evaluation is an appraisal of a result or claim by observation or experience, usually in repeatable experiments. The goal of such an experiment is to identify and remove factors that affect the end-state (in this case, usually the production of good software) that are distinct from those of the SE result being tested.

A terminological note is required to limit the scope of our claims, as obviously the area of software production is ultimately empirical. We do not consider the case where the long-term impact of a result is eventually evaluated to be identical to “empirical evaluation” of a result; while a decade-later retrospective on the effects of, e.g., the Agile Programming model [Melnik et al. 2002] may provide guidance to the field as a whole, it is of limited practical use in determining whether that model should have been in use for that decade. As well, an evaluation of productivity gained from work derived from other work is not necessarily considered an empirical evaluation of the original; in general, the genealogy of an idea or approach is too complex for such an approach to be reasonable.

2 Types of SER Result

[Lukowicz et al. 1994] define three major classes of research paper that present a result or propose an approach but do not include empirical evaluation. Formal theory results typically consist of some formally describable claim and a set of statements about that claim, usually proofs of correctness or applicability. Design and modeling results propose a technique, data model, or visualization that can be applied to some stage of the software planning process. What we will refer to as hypothesis
 works propose a hypothesis, and sometimes describe experiments that could be performed to test those hypotheses, but do not necessarily include the results of actually performing those tests. We discuss cases where each of these forms of evaluation is applicable, and empirical evaluations are either inapplicable or less appropriate.

2.1 Formal Analysis Work

One obvious type of result that does not necessarily benefit from empirical evaluation is formal analysis results – that is, papers where the claim is formally analyzed as to its correctness or applicability. In [De Millo et al. 1979], De Millo et al. argue that the formal verification of programs will not play a key role in the development of software engineering, due to absence of continuity, continuously changing nature, and complexity of real programs. They also note that, for practical purposes, reliability is not equivalent to perfect correctness, which is of course correct, or very little software would be reliable at all. We must also point out that any kind of empirical evaluation increases the confidence in the reliability or correctness of the program; one can also view formal analysis in similar light, which de Millo et al. do not do. They view verification as the mathematical proof (or proof in some logical proof system) that the program works entirely. Formal verification of large systems, with the current technology, may not be viable due to the complexity and ever-changing nature of such systems. However, we argue that a formal proof of some subset of properties of a system surely increases the confidence in the overall reliability of the program, in a manner similar to an empirical analysis – which, after all, tests only a tiny subset of the conditions that a program may encounter. For example, the fact that a program type-checks correctly and provably has no race conditions or memory deadlocks increases confidence in the reliability of the program. The amount of increase may be system dependent, but a similar level of increased confidence in that property couldn’t have been obtained by any reasonable amount of empirical analysis.

Programmers, when possible, use proven algorithms in their systems. The reason is that a known-correct algorithm increases the confidence in the correctness of the system as a whole. There may still be errors introduced in implementation, but in using a proven algorithm, the possible sources of error are reduced. This programmer is incorporating the value provided by the formal analysis of the algorithm in his code. While we are not claiming perfect correctness through formal analysis, the benefit of this sort of formal work is not at all negligible! In many cases the smaller or domain-limited results that can be proven formally may improve software more than empirical evaluation. In those cases, the core of the evaluation is the formally correctness analysis of a collection of small properties. Certainly, the two serve different purposes, and should coexist where possible.

2.2 Design and Methodology Work

Papers pertaining to the methodology of software development, or high-level design choices and models, may not provide enough (or any) empirical evaluation. While formal results do not require further evaluation, such evaluation may actually be infeasible for design work. This can be attributed to the cost of implementation and evaluation, in part because of the number of implemented instances required to give a knowledgeable evaluation is so high that it is impossible for a group of authors to do so. In these cases the authors publish their ideas with some non-empirical evaluation, frequently an argument invoking the intuitions of the community, or extensions of previously known results. Such intuitions and results can be drawn from an analysis – empirical or not – of previous work, or from comparisons to other methodologies or design choices. This non-empirical evaluation may not be provided by the authors in some cases, but inferred by the research community in general.

Since large amount of resources are required to empirically evaluate many of the methodologies and design choices, evaluations often happen only when they have been widely accepted and tried. In some cases this may come almost a decade later, as in the example of the Agile Programming model; the model evolved in the mid-1990’s, and empirical evaluations started occurring after 2002-2003. During that time, the Agile Programming model was somehow chosen over other available methodologies. To make this decision, the model must have been analyzed and evaluated against other choices. Many empirical evaluations have since been published, but the fact is that, before that, for almost a decade a non-negligible fraction of the community was using it over some other models (some of which had been empirically evaluated). This does point to the importance of the non-empirical evaluation techniques that were being used to make a judgment.

2.3 Hypothesis and Opinion Work

A final, and critically important, type of software engineering research that does not necessarily benefit from empirical evaluation is hypothesis papers. Some hypothesis papers do, of course, present a claim that can be evaluated empirically, and sometimes also a description of what such an evaluation would consist of; others, however, present hypotheses that are so broad as to be difficult to test, or which would have to be subdivided further into testable actions. It is worthwhile to briefly discuss the difference between a research hypothesis’ evaluation and its impact. It is entirely possible for a research claim to have a large-scale impact on the field without being empirically evaluated for correctness; an extreme case of this is opinion papers discussing how a field should proceed at a meta-level. (Obviously, the existence of an empirical evaluation does not make it impossible for a piece of work to have significant impact, nor guarantee that it will do so; the matrix is completely populated.)

Designing an empirical evaluation of a meta-level claim about a field requires subdividing the entire field of software development into a test group and a control group, either explicitly (as when a group adopts a methodology based on intuition or non-empirical analysis, as above), or temporally. However, position and opinion papers have the potential to dramatically affect the direction and productivity of the field as a whole. Any evaluation mechanism that underestimates the relevance of Go To Statement Considered Harmful [Dijkstra 1968] and No Silver Bullet: Essence and Accidents of Software Engineering [Brooks 1987] to software engineering research is flawed; furthermore, such papers are needed. High-level decisions must be made, either actively or through inaction, and should be informed by such discussions. Insisting that only a strictly empirical evaluation can have value misses the importance of human decision-making in the software development process and the evolution of the field as a whole.

3 Conclusions

In general, we agree with Shaw, Lukowicz, and others that empirical evaluations are of tremendous benefit, when they are both possible and applicable. Furthermore, we do not disagree that such evaluations are under-represented in current software engineering research and in computer science as a whole. However, there exist examples of important, high-impact results that do not lend themselves to such evaluations, for conceptual reasons (as in position papers), logistical and cost reasons (such as design and methodology papers), or inapplicability reasons (such as formal analysis work); without these non-empirically evaluated papers and results, it would be difficult or impossible to push the field of software engineering research forward. We would like to stress that the inarguable importance of empirical results does reduce the importance of other evaluation methodologies, and hope that this paper provides a framework for considering certain instances when those methodologies are appropriate.

4 References

[Abran et al. 2001] Guide to the Software Engineering Body of Knowledge – SWEBOK. Abran, A., Bourque, P., Dupuis, R., and. Moore, J. W. Eds. IEEE Press, 2001.

[Brooks, 1987] No Silver Bullet: Essence and Accidents of Software Engineering. Brooks, F. P. Computer 20, 4 (Apr. 1987), pp. 10-19.

[De Millo et al. 1979] Social processes and proofs of theorems and programs. De Millo, R. A., Lipton, R. J., and Perlis, A. J. 1979. Communications of the ACM, Vol. 22, No. 5, May. 1979, pp 271-280.

[Dijkstra, 1968] Go To Statement Considered Harmful. Dijkstra, Edgser W. Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.

[Lukowicz et al. 1994] Experimental Evaluation in Computer Science: A Quantitative Study. Lukowicz, P., Heinz, E.A., Prechelt, L., & Tichy, W.F. In the Journal of Systems and Software. Jan-Aug 1994.

[Melnik et al. 2002] Empirical Evaluation of Agile Processes. Melnik, G., Williams, L. A., & Geras, A. In Proc. of the Second XP Universe and First Agile Universe Conference on Extreme Programming and Agile Methods 2002, Aug. 2002. D. Wells and L. A. Williams, Eds. Lecture Notes In Computer Science, vol. 2418. Springer-Verlag, London, 286.

[Shaw, 2003] Writing Good Software Engineering Research Papers. Shaw, M. Proceedings of the 25th International Conference on Software Engineering, IEEE Computer Society, 2003, pp. 726-736.

� This description is partially drawn from http://www.csd.cs.cmu.edu/research/areas/softeng/

� In Lukowicz et al., this category is referred to as “hypothesis and testing”;

