
 UW CSE 503 David Notkin ● Winter 2008 1

Small group research project (50%)

• Groups of 2-4 (formed on your own)
• One-page proposal for a small-scale software

engineering research project due January 31
• All groups make presentations to the rest of the class

on March 13
• Write-ups (like a workshop or conference paper) due

on March 17

 UW CSE 503 David Notkin ● Winter 2008 2

But…

• …we haven’t read much software engineering
research yet

• …we haven’t done any software engineering
research before

• …we haven’t thought about how to evaluate software
engineering research (well, actually you have – and I
want your thoughts on this to inform your projects)

• …<insert more>

 UW CSE 503 David Notkin ● Winter 2008 3

Today

• Overview of research problems that (Marius and) I
find interesting and tractable

• Some general comments first
• Marius on software configurations
• Me on possible projects in other areas
• You on anything I missed that you’re interested in –

this list is not intended to be complete in any sense
• Collectively there will be only 3 to 6 projects total
• Discuss ideas with Marius and me; we can suggest

ideas, refinements, literature, etc.

 UW CSE 503 David Notkin ● Winter 2008 4

Software engineering research
• Boehm: more software systems fail because they don’t meet user

needs than because they aren’t implemented properly.
• Notkin: more software engineering research is uninteresting because

the problem addressed is uninteresting rather than because the
solution doesn’t address the problem

• Software engineering problems of interest should usually (in my
opinion), and very briefly…
– Populate the world with a potentially powerful new approach (e.g.,

Parnas information hiding, Weiser program slicing, software model
checking, Liblit et al. statistical defect location, Ernst dynamic
invariants)

– Make progress on an approach that is increasingly likely to have
value (many…)

– Carefully consider conventional wisdom (e.g., Knight and Leveson,
Kim et al., Votta inspections)

• Your projects are highly time-limited; keeping this kind of idea in mind is
good, though

 UW CSE 503 David Notkin ● Winter 2008 5

Software engineering research students…

• …always hear me say, “What is it about software engineering
that sucks, but shouldn’t?”
– Often (but not always) focuses on tedious, error-prone

activities
– Griswold: we don’t restructure programs as often as we

should because it’s error-prone?
– Murphy: software architecture is well and good, but what

happens when the code base drifts away from the
architecture over time?

– Ernst: invariants are good, but we don’t see as many as
we’d like – is there a way to get more?

– Nita: the only thing more prevalent that software
configurations is the ad hoc nature of thinking about and
manipulating them – can we do better?

 UW CSE 503 David Notkin ● Winter 2008 6

Marius: configurations

 UW CSE 503 David Notkin ● Winter 2008 7

Mining software repositories

• “Research is now proceeding to uncover the ways in which
mining [software] repositories can help to understand software
development, to support predictions about software
development, and to plan various aspects of software projects.”
[MSR 2007 web page]

• Repositories are broadly defined to include code, defect
databases, version control information, programmer
communications, etc.

• Enablers include the Internet, open source, more repositories,
more complex repositories, fast/cheap processors, big/cheap
memories, big/cheap disks, data mining/machine learning
results, new analyses, …

 UW CSE 503 David Notkin ● Winter 2008 8

Great area…

• So many empirical questions can be studied
– In essence, this is the science of studying software

in vivo
• Beware: there is so much data that finding

correlations is easy, but they often do not suggest
causation (cf., A Mathematician Reads the Newspaper, Paulos)

• Beware: if one learns something this way, understand
whether the intent is “general knowledge of software”
or, more preferably, something that could be
“actionable”

 UW CSE 503 David Notkin ● Winter 2008 9

Examples

• Any evidence of differing approaches to refactoring in
agile vs. non-agile software systems?

• Are the claims of 5:1 variations in (many dimensions
of) programmer productivity justified by existing
repositories?

• Any evidence, from repositories, of the benefits of
using Mylyn?

• Can one characterize successful open source
systems from unsuccessful ones in a precise way
based on their repositories?

• …

 UW CSE 503 David Notkin ● Winter 2008 10

Examples: other areas

• A key issue in design is anticipating future changes –
but we do this (at best) in an informal and ad hoc
way: is there a more disciplined way to think about
this?

• Under what contexts is the “small scope hypothesis”
more/less likely to hold?

• Apply
– Alloy to a system of interest (with a clear focus)
– Daikon to a system of interest (with a clear focus)
– …

• Define a “physical” (say, keystrokes needed) model
of the cost of developing and maintaining software

 UW CSE 503 David Notkin ● Winter 2008 11

More examples

• Combine static and dynamic extractors to construct a “better”
call graph
– Or any such combination of static and dynamic tools with

similar intent
• Can a concordance of (natural language) comments represent

any value?
• Debugging when the object code is structured very differently

from the source code is hard – consider this in the context of
optimizing compilers, aspect-oriented weavers, or such

• Develop/modify a software engineering tool that runs “side-by-
side” with its subject program on a multi-core machine

 UW CSE 503 David Notkin ● Winter 2008 12

More examples

• Consider, as an optimization problem, how to best
spend a fixed amount of resources split across (say)
unit testing and fuzz (random) testing

• Belady and Lehman have some “laws” of software
evolution, originally based on data from systems in
the 1970’s and 1980’s – reassess these laws in the
modern software context

• Consider Dwyer’s model of behavior vs. requirements
(which I showed in class) – show how to build
confidence in a significant rectangle (a set of
behaviors and a set of requirements)

 UW CSE 503 David Notkin ● Winter 2008 13

Your ideas?

 UW CSE 503 David Notkin ● Winter 2008 14

Clarify and scope

• Many of the suggestions are fuzzy and ill-scoped
• After picking a topic, that’s your first job – what’s the

definition, what’s the scope, and what’s the plan?
• We’re here to advise…

