
University of Washington May 14, 2001
Department of Computer Science and Engineering
CSE 521, Spring 1998

Applications of network flow, May 13, 1998

This material is not covered in our text. Some of it is from the book Network Flows, by Ahuja,
Magnanti, and Orlin.

Problem 1. Maximum Independent Set in a Bipartite Graph:

Given a bipartite graph G = (U, V,E), find an independent set U ′ ∪ V ′ which is as large as
possible, where U ′ ⊆ U and V ′ ⊆ V . A set is independent if there are no edges of E between
elements of the set.

Solution:

Construct a flow graph on the vertices U ∪ V ∪ {s, t}. For each edge (u, v) ∈ E there is an
infinite capacity edge from u to v. For each u ∈ U , there is a unit capacity edge from s to u, and
for each v ∈ V , there is a unit capacity edge from v to t.

Find a finite capacity cut S, T , with s ∈ S and t ∈ T . Let U ′ = U ∩ S and V ′ = V ∩ T . The
set U ′ ∪ V ′ is independent since we are assuming that there are no infinite capacity edges crossing
the cut. The size of the cut is |U − U ′|+ |V − V ′| = |U |+ |V | − |U ′ ∪ V ′|. Thus, in order to make
the independent set as large as possible, we make the cut as small as possible.

Problem 2. Optimal Strip Mining:

The strip mining problem is to determine the material to remove from the mine which maximizes
the value of the ore less the cost of the removal of the material. The area to be mined is divided
into cubes of a fixed size, and we must decide which cubes are to be removed. Each cube has a
cost of removal as well as a value of the ore that it contains. If a cube is removed, the cubes above
it, and diagonally above it must also be removed. (The latter restriction is to ensure that the sides
of the mine are not too steep.)

This problem can now be modelled with a graph, G = (V,E). We have a directed acyclic graph,
where the nodes correspond to the cubes of earth to be removed. A cube can only be removed
if all of its predecessors have been removed. Cube vi has cost ci and benefit bi. We can assume
that ci ≥ 0, bi ≥ 0 and one of ci or bi is 0. We wish to find a set of vertices R which is closed
with respect to predecessors (i.e., with the property that if (u, v) ∈ E and v ∈ R then u ∈ R) and
maximizes

∑
vi∈R bi − ci.

Solution:

We begin by constructing a flow graph on V ∪{s, t}. For (u, v) ∈ E we have an infinite capacity
edge between u and v. If ci > 0 we put an edge from s to vi with capacity ci, and if bi > 0 we put
an edge from vi to t with capacity bi.

Find a finite capacity cut S, T , with s ∈ S and t ∈ T . We will take our solution R to be T −{t}.
Since there are no infinite capacity edges from S to T , if u is a predecessor of v and v ∈ R then



u ∈ R, so R is closed. The edges crossing the cut are edges from the source, or edges to the sink.
A source edge crossing the cut gives a cost ci for an element in R. A sink edge crossing the cut
gives a benefit bi for an element not in R. Let the maximum possible benefit B be B =

∑
i bi and

the profit PR for a solution R be PR =
∑
vi∈R bi − ci. The capacity of the cut is:∑

vi∈R
ci +

∑
vi∈V−R

bi =
∑
vi∈R

ci +
∑

vi∈V−R
bi +

∑
vi∈R

bi −
∑
vi∈R

bi = B +
∑
vi∈R

ci −
∑
vi∈R

bi = B − PR.

Thus, to maximize the profit, we minimize the size of the cut. (Note that there are trivial solutions
which guarantee that there is a finite sized cut, which correspond to either having S = {s} or
T = {t}.)

Problem 3. Rounding elements of a table:
Give ranges for elements of a table and the row sums and columns sums, the question is whether

or not there is an assignment of values to the ranges that satisfy the row and column sums. To be
more precises, we have two n×m arrays, L and U which specify lower and upperbounds on matrix
elements. We also have a vector R of length n which specifies the column sums and a vector C of
length m which specifies the column sums.

We want to find a matrix A such that lij ≤ aij ≤ uij and
∑
j aij = ri and

∑
i aij = j.

Solution:
We construct a flow graph which sends flows from “rows” to “columns” via the matrix entries,

such that there is a feasible flow iff the equations can be satisfied.
We will need to assume that the vertices of the graph have capacities with upper and lower

bounds on the flow. The trick to introduce vertex capacities is to split the vertex v into vertices
vin, vout, with an edge vin → vout with the given upper and lower bounds on the vertex capacity.
All edges originally going into v go to vin and all edges originally leaving v, leave from vout.

The flow graph has vertices vri (for the rows), vcj (for the columns), and vij (for the array
entries). The capacities are:

Vertex Lower bound Upper bound
vri ri ri
vcj cj cj
vij lij uij

We have edges vri → vij for all j and edges vcj → vij for all i. These edges can have infinite
capacity (since we already restrict the flow with capacities on the vertices).

If there is a feasible solution, then each row sends its flow to the entries in its column, and then
the entries of each column send their flow to the column. This gives the correct values for the row
and column sums.

Problem 4. Can the Mariners win the pennant?:
The final problem is to determine, given the current standings in a sports league, whether or

not a given team has the possibility of finishing first.
At some point in the season we have the current standings, e.g:

Team Wins Losses
Army Ants 8 4
Banana Slugs 7 5
Cockroaches 6 6
Dead Snails 3 9



as well as the number of remaining games for each team. Let gij denote the number of games that
team i has with team j. In this example, lets assume each team has two remaining games with
each other team.

We ask the question, can the Dead Snails finish first in the league. Since they have six games
left, they can finish with nine wins which would put them in first place, assuming that the other
teams lost all of their remaining games. However, since the other teams will play each other, we
can’t assume they will all lose all games.

Solution:

The flow problem we set up has vertices ti for each team (other than the team we are evaluating),
and vertices for the vij for the games that team i plays with team j.

Let W be the maximum number of wins that the Dead Snails can have assuming they win the
rest of their games, and wi the number of wins that team i currently has. We have an edge of
capacity W − wi from s to ti. We have infinite capacity arcs from ti to vij for each j. The edge
from vij to t has capacity gij . We ask if there exists a flow of size

∑
ij gij in this network.

The flow corresponds to having a winner for each of the remaining games. The flow along the
edges vij → t accounts for teams ti and tj playing the right number of times. The flow from s to
the ti’s assigns winners to the games in a way that no one has more wins than the Dead Snails.


