CSE 521

Algorithms
Spring 2003

Entropy
Arithmetic Coding

Basic Data Compression Concepts

original compressed decompressed

y X

+ Lossless compression X=X

— Also called entropy coding, reversible coding.
- Lossy compression X # X

— Also called irreversible coding.
» Compression ratio = |x|/]y]

- M is number of bits in x.

CSE 521 - Arithmetic Coding - Spring 2003 2

Why Compress

» Conserve storage space
¢ Reduce time for transmission

— Faster to encode, send, then decode than to send
the original

* Progressive transmission

— Some compression techniques allow us to send
the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

e Reduce computation
— Use less data to achieve an approximate answer

CSE 521 - Arithmetic Coding - Spring 2003

Braille

» System to read text by feeling raised dots on
paper (or on electronic displays). Invented in
1820s by Louis Braille, a French blind man.

00 oo 00
a ©°° b eo C oo Z oo
oo oo FH

oo

and s5 the oo with es mother se oo
H K I

°0

th 22 chSs gh S

CSE 521 - Arithmetic Coding - Spring 2003 4

Braille Example

Clear text:

Call me Ishmael. Some years ago -- never mind how
long precisely -- having \\ little or no money in my purse,
and nothing particular to interest me on shore, \\ | thought
I would sail about a little and see the watery part of the
world. (238 characters)

Grade 2 Braille in ASCII.

,call me ,\%mael4 ;s ye$>$s ago -- n""e m9d h[|;g
precisely -- hav+ \\ Il or no m oy 9 my pursel \& no?+
“picul$>$ 6 9tle/ me on \%orel \\ ,i 7°$|$,i wd sail
aball\&see ! watly "p (!\ w4 (203 characters)

Compression ratio = 238/203 = 1.17

CSE 521 - Arithmetic Coding - Spring 2003 5

Lossless Compression

» Data is not lost - the original is really needed.
— text compression
— compression of computer binaries to fit on a floppy
» Compression ratio typically no better than 4:1 for
lossless compression on many kinds of files.
« Statistical Techniques
— Huffman coding
— Arithmetic coding
— Golomb coding
« Dictionary techniques
- LZW, LZ77
— Sequitur
— Burrows-Wheeler Method
» Standards - Morse code, Braille, Unix compress, gzip,
zip, bzip, GIF, JBIG, Lossless JPEG

CSE 521 - Arithmetic Coding - Spring 2003 6

Why is Data Compression Possible

* Most data from nature has redundancy

— There is more data than the actual information
contained in the data.

— Squeezing out the excess data amounts to
compression.

— However, unsgeezing out is necessary to be able
to figure out what the data means.

Information theory is needed to understand

the limits of compression and give clues on

how to compress well.

CSE 521 - Arithmetic Coding - Spring 2003 7

Information Theory

» Developed by Shannon in the 1940’s and 50’s

» Attempts to explain the limits of communication
using probability theory.

» Example: Suppose English text is being sent

— Suppose a “t” is received. Given English, the next
symbol being a “z” has very low probability, the
next symbol being a “h” has much higher probability.
Receiving a “z" has much more information in it than
receiving a “h”. We already knew it was more likely
we would receive an “h”".

CSE 521 - Arithmetic Coding - Spring 2003 8

First-order Information

» Suppose we are given symbols {a,, a,, ... , 8y}

* P(a;) = probability of symbol &; occurring in the
absence of any other information.
- P(a) +P(ay) + ... + P(ay) = 1

* inf(a;) = -log, P(&) bits is the information of a; in
bits.

—og(¥)

T]

o 0o
38238 8¢% S5 3ERRB YR
S 3 E

CSE 521 - Arithmetic Coding - Spring 2003 9

Example

* {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
— inf(a) = -log,(1/8) = 3
— inf(b) = -log,(1/4) = 2
— inf(c) = -log,(5/8) = .678

* Receiving an “a” has more information than
receiving a “b” or “c”.

CSE 521 - Arithmetic Coding - Spring 2003 10

First Order Entropy

» The first order entropy is defined for a probability
distribution over symbols {a,, a,, ..., a,}.

H == P(a)log, (P(a))

i=1

» His the average number of bits required to code up a
symbol, given all we know is the probability distribution
of the symbols.

* His the Shannon lower bound on the average number of
bits to code a symbol in this “source model”.

» Stronger models of entropy include context. We'll talk
about this later.

CSE 521 - Arithmetic Coding - Spring 2003 11

Entropy Examples

{a, b, c} with a 1/8, b 1/4, c 5/8.
— H=1/8*3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

{a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
— H =-3*(1/3)*log,(1/3) = 1.6 bits/symbol

{a, b, c}withal, b0, c O (best case)

— H=-1*l0g,(1) =0

* Note that the standard coding of 3 symbols
takes 2 bits.

CSE 521 - Arithmetic Coding - Spring 2003 12

Entropy Curve

* Suppose we have two symbols with probabilities
x and 1-x, respectively.

maximum entropy at .5

——(x log x + (1-x)log(1x))

N Mt e N @ o

o o
© © © o o o 8 © o
probability of first symbol

13

CSE 521 - Arithmetic Coding - Spring 2003

Reals in Binary

* Any real number x in the interval [0,1) can be
represented in binary as .b;b,... where b; is a

bit. 0 1 o0 1
0 0.1 e

binary representation

CSE 521 - Arithmetic Coding - Spring 2003

First Conversion

L:=0;R:=1;i:=1

while x> L *
if x< (L+R)/2 then b;:= 0 ; R := (L+R)/2;
if x> (L+R)/2 then b;:= 1; L := (L+R)/2;

i=it+tl
end{while}
bj:=0forallj>i

* Invariant: x is always in the interval [L,R)

CSE 521 - Arithmetic Coding - Spring 2003 15

Conversion using Scaling

» Always scale the interval to unit size, but x must be
changed as part of the scaling.

CSE 521 - Arithmetic Coding - Spring 2003

Binary Conversion with Scaling

y:=x1i:=0
whiley >0 *
=i+l
ify<1/2thenb;:=0;y:=2y;
ify>1/2thenb;:=1;y:= 2y—-1;

end{while}
bj:=0forallj>i+1

* Invariant: x = .bb, ... b, + y/2i

CSE 521 - Arithmetic Coding - Spring 2003 17

Proof of the Invariant

* Initially x =0 +y/20
¢ Assume X =.b;b, ... bj+ y/2i
— Casel.y<1/2. b,;=0andy =2y
by, . BBy Y21 = byb, .. b; O+ 2y/21
= b,b, .. b+ yI2
=X

—Case2.y>1/2. b,=landy =2y-1
Db, .. biby g+ yI2# = byb, .. by 1+ (2y-1)/21
= .byb, ... by +1/211+ 2y[2i+1-1/2i%1
bib, ... b+ y/2i
X

CSE 521 - Arithmetic Coding - Spring 2003

Arithmetic Coding

Basic idea in arithmetic coding:
— represent each string x of length n by a unique
interval [L,R) in [0,1).
— The width r-I of the interval [L,R) represents the
probability of x occurring.

— The interval [L,R) can itself be represented by any
number, called a tag, within the half open interval.

— The k significant bits of the tag .t;t,t5... is the code of
X. Thatis, . .titt5...t000... is in the interval [L,R).

CSE 521 - Arithmetic Coding - Spring 2003 19

Example of Arithmetic Coding (1)

0 1. tag must be in the half open interval.
2. tag can be chosen to be (L+R)/2.
173 |a 3. code is the significant bits of the tag.
23 b bba 15/27 .100011100...
""""" 19/27 .101101000...
bb
1 tag = 17/27 = .101000010...
code = 101
CSE 521 - Arithmetic Coding - Spring 2003 20

Some Tags are Better than Others

0
13 |a
S 11/27 .011010000...
ba
bab y
203) 15/27 .100011100...
Using tag = (L+R)/2
tag = 13/27 = .011110110...
code = 0111
1
Alternative tag = 14/37 = .100001001...
code =1
CSE 521 - Arithmetic Coding - Spring 2003 21

Example of Codes

* P(a) = 1/3, P(b) = 2/3. tag= (L+R)2 code

Code Generation from Tag
If binary tag is .t;tyts... = (L+R)/2 in [L,R) then
we want to choose k to form the code t;t,...t,.
* Short code:
— choose k to be as small as possible so that
L < .t;t,...000... <R.
Guaranteed code:
— choose k =[log, (1/(R-L))]+1
— L < tyt,...tbyb,bs... < R for any bits b,b,bs...
— for fixed length strings provides a good prefix code.

— example: [.000000000..., .000010010...), tag = .000001001...

Short code: 0
Guaranteed code: 000001

CSE 521 - Arithmetic Coding - Spring 2003 23

O praatana 97 0090090 ooononoor 0 aam
aab_3/27 '000111000. 000100110... 0001 aab
a b laba__ 557 001011110 -001001100.. 001 aba
3 1 apb 027 01010101, 010000101 0L abb
b lbaa__711/27 ‘011010000, -010111110.. 01011 baa
2 | bab .011110111... 0111 bab
oh 15/27 .100011100...
a
b o 19/27 101101000 -101000010.. 101 bba
bbb .110110100... 11 bbb
1 27/27 .111111111... .95 bits/symbol
.92 entropy lower bound
CSE 521 - Arithmetic Coding - Spring 2003 22
Guaranteed Code Example
« P(a) = 1/3, P(b) = 2/3. _
short Prefix
tag = (L+R)/2 code code
0 FEREEEN .000001001... O 0000 aaa
.000100110... 0001 0001 aab
a bt .001001100... 001 001 aba
@ .010000101... 01 0100 abb
ba ¢ .010111110... 01011 01011 baa
a .011110111... 0111 0111 bab
b | .101000010... 101 101 bba
bb
.110110100... 11 11 bbb
1 27127

CSE 521 - Arithmetic Coding - Spring 2003 24

Arithmetic Coding Algorithm

* Pl@), P@@y), ..., P(an)
* C&) =P(a) + P(ap) + ... +P(a.y)
» Encode X;X,...X,

Initialize L := 0 and R:=1;

fori=1tondo
W:=R-L;
L:=L+W*C(x);
R:=L+W*P(x);

t:= (L+R)/2;

choose code for the tag

CSE 521 - Arithmetic Coding - Spring 2003

25

Arithmetic Coding Example

« P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
+ C(a) =0, C(b) = 1/4, C(c) = 3/4

» abca
symbol W L R
0 1
“R-L: a 1 0 14
XV. _'LR;\AL,' cw: ° V4 116 316
R=L+WP © 18 5/32 6/32
. a 132 5/32 21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...
L =.001010000...

R =.001010100...

code = 00101

prefix code = 00101001

CSE 521 - Arithmetic Coding - Spring 2003 26

Decoding (1)

» Assume the length is known to be 3.
» 0001 which converts to the tag .0001000...

.0001000... -----mmmrgmemmmeees output a

1
CSE 521 - Arithmetic Coding - Spring 2003

27

Decoding (2)

» Assume the length is known to be 3.
» 0001 which converts to the tag .0001000...

0
.0001000... aa output a
a
ab
b
1
CSE 521 - Arithmetic Coding - Spring 2003 28

Decoding (3)

» Assume the length is known to be 3.
» 0001 which converts to the tag .0001000...

0
.0001000... = faab output b

@D

ab

1
CSE 521 - Arithmetic Coding - Spring 2003

29

Arithmetic Decoding Algorithm

* P@), P@@y), ..., P(an)

* C(@) =P(a) + P(ap) + ... + P(a.y)
» Decode b,b,...b,,, number of symbols is n.

Initialize L :=0and R:=1;
t :=.byb,...b,,000...
fori=1tondo
W:=R-L;
find j such that L + W * C(a) < t <L + W * (C(a)+P(a))
output a;
Li=L+W*C(a);
R:=L+W*P(),

CSE 521 - Arithmetic Coding - Spring 2003 30

Decoding Example

« P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
« C(a)=0, C(b) = 1/4, C(c) = 3/4

« 00101
tag = .00101000... = 5/32
w L R output
0 1

1 0 1/4 a

1/4 1/16 3/16 b

1/8 5/32 6/32 c
1/32 5/32 21/128 a

CSE 521 - Arithmetic Coding - Spring 2003 31

Decoding Issues

* There are two ways for the decoder to know
when to stop decoding.

1. Transmit the length of the string
2. Transmit a unique end of string symbol

CSE 521 - Arithmetic Coding - Spring 2003 32

More Issues

» Avoiding real arithmetic and scaling
» Context

» Adaptive

» Comparison with Huffman coding

CSE 521 - Arithmetic Coding - Spring 2003 33

Scaling

» Scaling:

— By scaling we can keep L and R in a reasonable
range of values so that W = R — L does not
underflow.

— The code can be produced progressively, not at
the end.

— Complicates decoding some.

Scaling Principle

Lower half
If [L,R) is contained in [0,.5) then
L:=2L;R:=2R
output 0, followed by C 1's
C:=0. C keeps track of the
number of bits needed
Upper half when we learn which
If [L,R) is contained in [.5,1) then side of 1/2 the tag must
L:=2L-1,R:=2R-1 bein.
output 1, followed by C 0's
C:=0
Middle Half
If [L,R) is contained in [.25,.75) then
L:=2L-5R:=2R-5
C:=C+1.
CSE 521 - Arithmetic Coding - Spring 2003 35

CSE 521 - Arithmetic Coding - Spring 2003 34
Example
e baa
0
C=0
U3 |a
L=1/3 R=3/3
213 |b
1

CSE 521 - Arithmetic Coding - Spring 2003 36

CSE 521 - Arithmetic Coding - Spring 2003 39

Example
e baa
0
C=0 y3 |,)
Scale middle half
L=1/3 R=3/3
L=3/9 R=5/9
23 |b
CSE 521 - Arithmetic Coding - Spring 2003 37
Example
e baa
0
C=1 u3 |,
Scale lower half
baa
L=3/18 R=11/18 ba
L=9/54 R=17/54
23 |b

Example
e baa
0
C=1 u3 |,
L=3/9 R=5/9 ba
L=3/18R=11/18
213 |b
CSE 521 - Arithmetic Coding - Spring 2003 38
Example
e baa 01
0
C=0 y3 |,
baa.
L=9/54 R = 17/54 ba
L = 18/54 R = 34/54 \
a3 b | T
1

CSE 521 - Arithmetic Coding - Spring 2003

Example
e baa 011
Inend L <% <R, choose tag to be 1/2
0
C=0 yz |,
baa. o101..
L=9/54 R =17/54 ba
L = 18/54 R = 34/54 _ | -1000... = tag
23 |b | T
.1010...

CSE 521 - Arithmetic Coding - Spring 2003 41

Integer Implementation

* m bitintegers
— Represent 0 with 000...0 (m times)
— Represent 1 with 111...1 (m times)
» Probabilities represented by frequencies

— n; is the number of times that symbol & occurs
= GEngtn oty
= N=n;+n,+ ... +n,

W:=R-L+1
L ::L{%J Coding the i-th symbol using

integer calculations.
. i 1
R::LJ{WNCMJ& Must use scaling!

L=L

CSE 521 - Arithmetic Coding - Spring 2003 42

Context

» Consider 1 symbol context.
« Example: 3 contexts.

next
a b c
aj.4 2 4
previpli 8 1
c|.25 .25 .5
CSE 521 - Arithmetic Coding - Spring 2003 43

Example with Scaling

next

e acc 0 10 1

0 Q

b ¢
2 4
8 .1
.25 .5

°

@

<

oo
NN
» o

4 2/15 § cl 5
/

3110 /

3 _ /
b 2 e 25 / Code = 0101
2i5 251/

vs 4 ac | 170 ¢

23 -

3 amodel s/ Fradl
¢ model

first half middle half second half

Equally Likely model ~CSE 521 - Aritimetic Coding - Spring 2003 a4

21 5 |acc

Arithmetic Coding with Context

» Maintain the probabilities for each context.

» For the first symbol use the equal probability
model

» For each successive symbol use the model
for the previous symbol.

CSE 521 - Arithmetic Coding - Spring 2003 45

Adaptation

» Simple solution — Equally Probable Model.
— Initially all symbols have frequency 1.
— After symbol x is coded, increment its frequency
by 1
— Use the new model for coding the next symbol
« Example in alphabet a,b,c,d

After aabaac is encoded
The probability model is
ab5/10 b2/10
c2/10 d1/10

Qo oW
A
PRRND
PRPRPWW
PRPRNDNWDT

aac
455
222
112
111

CSE 521 - Arithmetic Coding - Spring 2003 46

Zero Frequency Problem

» How do we weight symbols that have not occurred yet.
— Equal weights? Not so good with many symbols
— Escape symbol, but what should its weight be?

— When a new symbol is encountered send the <esc>, followed
by the symbol in the equally probable model. (Both encoded
arithmetically.)

b
a 0 ? g 2 g Z Z After aabaac is encoded
b 0 001111 The probability model is
¢ 0 000001 ad4lt b7
d 0000000 CL7 dO
<esc>1 111111 <ese>177

CSE 521 - Arithmetic Coding - Spring 2003 47

PPM

» Prediction with Partial Matching
— Cleary and Witten (1984)
 State of the art arithmetic coder
— Avrbitrary order context
— The context chosen is one that does a good
prediction given the past
— Adaptive
* Example
— Context “the” does not predict the next symbol “a”
well. Move to the context “he” which does.

CSE 521 - Arithmetic Coding - Spring 2003 48

Arithmetic vs. Huffman

» Both compress very well. For m symbol grouping.

— Huffman is within 1/m of entropy.
— Arithmetic is within 2/m of entropy.
» Context
— Huffman needs a tree for every context.

— Arithmetic needs a small table of frequencies for every
context.

» Adaptation
— Huffman has an elaborate adaptive algorithm
— Arithmetic has a simple adaptive mechanism.

» Bottom Line — Arithmetic is more flexible than
Huffman.

CSE 521 - Arithmetic Coding - Spring 2003

49

Applications of Arithmetic Coding

« JPEG 2000
— Image compression
— Wavelet transform

— Bit-planes of the transformed image is adaptively
arithmetic coded.

— Contexts relate to structure of wavelet coefficients
« JBIG

— Binary image compression

— Context is about 10 nearby pixels already coded.

CSE 521 - Arithmetic Coding - Spring 2003 50

