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Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding. 

• Compression ratio =             
– is number of bits in x.

xx ˆ�

xx ˆ�

yx
x

decompressed
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Why Compress
• Conserve storage space
• Reduce time for transmission

– Faster to encode, send, then decode than to send 
the original

• Progressive transmission
– Some compression techniques allow us to send 

the most important bits first so we can get a low 
resolution version of some data before getting the 
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer
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Braille

• System to read text by feeling raised dots on 
paper (or on electronic displays).  Invented in 
1820s by Louis Braille, a French blind man.

a b c z

and the with mother 

th ghch
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Braille Example
Clear text:
Call me Ishmael.  Some years ago -- never mind how 
long precisely -- having \\ little or no money in my purse, 
and nothing particular to interest me on shore, \\ I thought 
I would sail about a little and see the watery part of the 
world.   (238 characters)

Grade 2 Braille in ASCII.
,call me ,i\%mael4 ,``s ye$>$s ago -- n``e m9d h[ l;g 
precisely -- hav+ \\ ll or no m``oy 9 my purse1 \& no?+ 
``picul$>$ 6 9t]e/ me on \%ore1 \\ ,i $?$``$|$ ,i wd sail
ab a ll \& see ! wat]y ``p ( ! \_w4  (203 characters)

Compression ratio = 238/203 = 1.17 
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Lossless Compression
• Data is not lost - the original is really needed.

– text compression
– compression of computer binaries to fit on a floppy 

• Compression ratio typically no better than 4:1 for 
lossless compression on many kinds of files.

• Statistical Techniques
– Huffman coding
– Arithmetic coding
– Golomb coding

• Dictionary techniques
– LZW, LZ77 
– Sequitur 
– Burrows-Wheeler Method

• Standards - Morse code, Braille, Unix compress, gzip, 
zip, bzip, GIF, JBIG, Lossless JPEG
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Why is Data Compression Possible

• Most data from nature has redundancy
– There is more data than the actual information 

contained in the data.

– Squeezing out the excess data amounts to 
compression.

– However, unsqeezing out is necessary to be able 
to figure out what the data means.

• Information theory is needed to understand 
the limits of compression and give clues on 
how to compress well.
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Information Theory

• Developed by Shannon in the 1940’s and 50’s
• Attempts to explain the limits of communication 

using probability theory.
• Example: Suppose English text is being sent

– Suppose a “t” is received. Given English, the next 
symbol being a “z” has very low probability,  the 
next symbol being a “h” has much higher probability.  
Receiving a “z” has much more information in it than 
receiving a “h”.  We already knew it was more likely 
we would receive an “h”.
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First-order Information
• Suppose we are given symbols {a1, a2, ... , am}.
• P(ai) = probability of symbol ai occurring in the 

absence of any other information.
– P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = -log2 P(ai) bits is the information of ai in 
bits.
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Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
– inf(a) = -log2(1/8) = 3

– inf(b) = -log2(1/4) = 2

– inf(c) = -log2(5/8) = .678

• Receiving an “a” has more information than 
receiving a “b” or “c”.
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First Order Entropy
• The first order entropy is defined for a probability 

distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code up a 
symbol, given all we know is the probability distribution 
of the symbols.

• H is the Shannon lower bound on the average number of 
bits to code a symbol in this “source model”.

• Stronger models of entropy include context. We’ll talk 
about this later.
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Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.
– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
– H = -3* (1/3)*log2(1/3) = 1.6 bits/symbol

• {a, b, c} with a 1, b 0, c 0 (best case)
– H = -1*log2(1) = 0

• Note that the standard coding of 3 symbols 
takes 2 bits.
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Entropy Curve

• Suppose we have two symbols with probabilities 
x and 1-x, respectively.
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Reals in Binary

• Any real number x in the interval [0,1) can be 
represented in binary as .b1b2... where bi is a 
bit.

0

1

x

0       1       0        1   ....    

binary representation
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First Conversion

L := 0; R :=1; i := 1
while x > L *

if x < (L+R)/2 then bi := 0 ; R := (L+R)/2;
if x > (L+R)/2 then bi := 1 ; L := (L+R)/2;
i := i + 1

end{while}
bj := 0 for all j > i

* Invariant: x is always in the interval [L,R)
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Conversion using Scaling

• Always scale the interval to unit size, but x must be 
changed as part of the scaling.

0

1

x

0        1       0        1   ....    
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Binary Conversion with Scaling

y := x; i := 0
while y > 0 *

i := i + 1;
if y < 1/2 then bi := 0; y := 2y;
if y > 1/2 then bi := 1; y :=  2y – 1;

end{while}
bj := 0 for all j > i + 1

* Invariant: x = .b1b2 ... bi + y/2i
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Proof of the Invariant

• Initially  x = 0 + y/20

• Assume x =.b1b2 ... bi + y/2i

– Case 1. y < 1/2.  bi+1 = 0 and y’ = 2y
.b1b2 ... bi bi+1+ y’/2i+1 = .b1b2 ... bi 0+ 2y/2i+1 

= .b1b2 ... bi + y/2i

=  x

– Case 2. y > 1/2. bi+1 = 1 and y’ = 2y – 1
.b1b2 ... bi bi+1+ y’/2i+1 = .b1b2 ... bi 1+ (2y-1)/2i+1

= .b1b2 ... bi +1/2i+1+ 2y/2i+1-1/2i+1

= .b1b2 ... bi + y/2i

=  x
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Arithmetic Coding

Basic  idea in arithmetic coding:
– represent each string x of length n by a unique 

interval [L,R) in [0,1). 

– The width r-l of the interval [L,R) represents the 
probability of x occurring.

– The interval [L,R) can itself be represented by any 
number, called a tag, within the half open interval.

– The k significant bits of the tag .t1t2t3... is the code of 
x.  That is, . .t1t2t3...tk000... is in the interval [L,R).
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Example of Arithmetic Coding (1)

a

b

bb

0

1

bba
15/27

19/27

.100011100...

.101101000...

tag = 17/27 = .101000010...
code = 101

1. tag must be in the half open interval.
2. tag can be chosen to be (L+R)/2.
3. code is the significant bits of the tag.1/3

2/3
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Some Tags are Better than Others

a

b

ba

0

1

bab
11/27

15/27

.011010000...

.100011100...

1/3

2/3

Using tag = (L+R)/2
tag = 13/27 = .011110110...
code = 0111

Alternative tag = 14/37 = .100001001...
code = 1
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Example of Codes

• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000010010...

.000000000...

.000111000...

.001011110...

.010101010...

.011010000...

.100011100...

.101101000...

.111111111...

.000001001...     0          aaa

.000100110...     0001    aab

.001001100...     001      aba

.010000101...     01        abb

.010111110...     01011  baa

tag = (L+R)/2        code

.011110111...     0111    bab

.101000010...     101      bba

.110110100...     11        bbb

.95 bits/symbol

.92 entropy lower bound
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Code Generation from Tag
• If binary tag is .t1t2t3... = (L+R)/2  in [L,R) then 

we want to choose k to form the code t1t2...tk.
• Short code: 

– choose k to be as small as possible so that 
L < .t1t2...tk000... < R.

• Guaranteed code:
– choose
– L < .t1t2...tkb1b2b3... < R for any bits b1b2b3...
– for fixed length strings provides a good prefix code.
– example: [.000000000..., .000010010...), tag = .000001001...

Short code: 0
Guaranteed code: 000001

� � 1L))(1/(R logk 2 ���

CSE 521 - Arithmetic Coding - Spring 2003 24

Guaranteed Code Example
• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000001001...     0          0000  aaa

.000100110...     0001    0001  aab

.001001100...     001      001  aba

.010000101...     01        0100  abb

.010111110...     01011  01011  baa

tag = (L+R)/2

.011110111...     0111    0111  bab

.101000010...     101      101  bba

.110110100...     11        11  bbb

short
code

Prefix
code
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Arithmetic Coding Algorithm

• P(a1), P(a2), … , P(am)
• C(ai) = P(a1) + P(a2) + … + P(ai-1) 
• Encode x1x2...xn

Initialize L := 0 and R:= 1;
for i = 1 to n do

W := R - L;
L := L + W * C(xi);
R := L + W * P(xi);

t := (L+R)/2;
choose code for the tag
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Arithmetic Coding Example
• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• abca

symbol      W         L           R  
0          1

a           1          0        1/4
b          1/4      1/16     3/16
c          1/8      5/32     6/32
a         1/32     5/32    21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...
L = .001010000...
R = .001010100...
code = 00101
prefix code = 00101001

W := R - L;
L := L + W C(x);  
R := L + W P(x)
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Decoding (1)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

.0001000... output a
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Decoding (2)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

.0001000... output a
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Decoding (3)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

aab.0001000... output b
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Arithmetic Decoding Algorithm

• P(a1), P(a2), … , P(am)
• C(ai) = P(a1) + P(a2) + … + P(ai-1) 
• Decode b1b2...bm, number of symbols is n.

Initialize L := 0 and R := 1;
t := .b1b2...bm000...
for i = 1 to n do

W := R - L;
find j such that L + W * C(aj) < t < L + W * (C(aj)+P(aj))
output aj;
L := L + W * C(aj);
R := L + W * P(aj);
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Decoding Example

• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• 00101

tag = .00101000... = 5/32
W         L            R              output

0          1
1          0        1/4                 a

1/4      1/16     3/16               b
1/8      5/32     6/32               c
1/32    5/32    21/128            a
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Decoding Issues

• There are two ways for the decoder to know 
when to stop decoding.
1. Transmit the length of the string
2. Transmit a unique end of string symbol
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More Issues

• Avoiding real arithmetic and scaling
• Context
• Adaptive
• Comparison with Huffman coding 
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Scaling 

• Scaling:
– By scaling we can keep L and R in a reasonable 

range of values so that W = R – L does not 
underflow.  

– The code can be produced progressively, not at 
the end.

– Complicates decoding some.
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Scaling Principle
Lower half
If  [L,R) is contained in [0,.5) then 

L := 2L; R := 2R 
output 0, followed by  C 1’s
C := 0.

Upper half
If [L,R) is contained in  [.5,1) then 

L := 2L –1, R := 2R - 1 
output 1, followed by C 0’s
C := 0

Middle Half
If [L,R) is contained in  [.25,.75)  then 

L := 2L –.5, R := 2R -.5 
C := C + 1.

C keeps track of the
number of bits needed
when we learn which 
side of 1/2 the tag must
be in.
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Example

• baa    

a

b

0

1

1/3

2/3

L = 1/3  R = 3/3

C = 0
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Example

• baa        

a

b

0

1

1/3

2/3

Scale middle half

L = 1/3  R = 3/3 
L = 3/9  R = 5/9

C = 0
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Example

• baa        

a

b

0

1

1/3

2/3

L = 3/9  R = 5/9
L = 3/18 R = 11/18

C = 1

ba
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Example

• baa

a

b

0

1

1/3

2/3

L = 3/18 R = 11/18
L = 9/54 R = 17/54

C = 1

ba

baa
Scale lower half
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Example

• baa 01

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa
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Example

• baa   011

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa .0101…

.1000… = tag

.1010…

In end L < ½ < R, choose tag to be 1/2
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Integer Implementation

• m bit integers
– Represent 0 with  000…0 (m times)
– Represent 1 with  111…1 (m times)

• Probabilities represented by frequencies
– ni is the number of times that symbol ai occurs
– Ci = n1 + n2 + … + ni-1

– N = n1 + n2 + … + nm

L' : L

1
N
CW

L :R

N

CW
L:L'

1LR:W

1i

i

�

��	

�

�


 �
��

�	

�

�


 �
��

���

�

Coding the i-th symbol using
integer calculations. 
Must use scaling!
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Context

• Consider 1 symbol context.
• Example: 3 contexts.

prev

next

a    b    c
a  .4    .2   .4
b  .1    .8   .1
c  .25  .25  .5
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Example with Scaling

• acc   a    b    c
a  .4    .2   .4
b  .1    .8   .1
c  .25  .25  .5

prev

next

a

Equally Likely model

ac

1/3 

1/3 

1/3 

0                          10            1  

a model

c model

.4

.2

.4 

.25

.25

.5 acc

0

1/3

0

2/3

2/5

2/3

3/10

5/6

17/30

5/6

first half           middle half              second half

2/3

2/15

Code = 0101
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Arithmetic Coding with Context

• Maintain the probabilities for each context.
• For the first symbol use the equal probability 

model
• For each successive symbol use the model 

for the previous symbol.
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Adaptation

• Simple solution – Equally Probable Model.
– Initially all symbols have frequency 1.
– After symbol x is coded, increment its frequency 

by 1
– Use the new model for coding the next symbol

• Example in alphabet a,b,c,d

a  a  b  a  a  c
a  1   2  3  3  4  5  5
b  1   1  1  2  2  2  2
c  1   1  1  1  1  1  2
d  1   1  1  1  1  1  1

After aabaac is encoded
The probability model is
a 5/10      b 2/10
c 2/10      d 1/10
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Zero Frequency Problem

• How do we weight symbols that have not occurred yet.
– Equal weights?  Not so good with many symbols

– Escape symbol, but what should its weight be? 

– When a new symbol is encountered send the <esc>, followed 
by the symbol in the equally probable model.  (Both encoded 
arithmetically.)

a  a  b  a  a  c
a       0    1  2  2  3  4  4
b       0    0  0  1  1  1  1
c       0    0  0  0  0  0  1
d       0    0  0  0  0  0  0

<esc>  1    1  1  1  1  1  1

After aabaac is encoded
The probability model is
a 4/7      b 1/7
c 1/7      d 0
<esc> 1/7
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PPM

• Prediction with Partial Matching
– Cleary and Witten (1984)

• State of the art arithmetic coder
– Arbitrary order context
– The context chosen is one that does a good 

prediction given the past
– Adaptive

• Example
– Context “the” does not predict the next symbol “a” 

well.  Move to the context “he” which does.
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Arithmetic vs. Huffman

• Both compress very well.  For m symbol grouping.
– Huffman is within 1/m of entropy.
– Arithmetic is within 2/m of entropy.

• Context
– Huffman needs a tree for every context.
– Arithmetic needs a small table of frequencies for every 

context.

• Adaptation
– Huffman has an elaborate adaptive algorithm
– Arithmetic has a simple adaptive mechanism.

• Bottom Line – Arithmetic is more flexible than 
Huffman.
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Applications of Arithmetic Coding

• JPEG 2000
– Image compression
– Wavelet transform
– Bit-planes of the transformed image is adaptively 

arithmetic coded.
– Contexts relate to structure of wavelet coefficients

• JBIG
– Binary image compression
– Context is about 10 nearby pixels already coded.


