CSE 521
Algorithms
Spring 2003

Entropy
Arithmetic Coding

Basic Data Compression Concepts

- Lossless compression $x=\hat{x}$
- Also called entropy coding, reversible coding.
- Lossy compression $x \neq \hat{x}$
- Also called irreversible coding.
- Compression ratio $=|x| /|y|$
- $|x|$ is number of bits in x.

Why Compress

- Conserve storage space
- Reduce time for transmission
- Faster to encode, send, then decode than to send the original
- Progressive transmission
- Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
- Use less data to achieve an approximate answer

Braille Example

Clear text:
Call me Ishmael. Some years ago -- never mind how long precisely -- having $\backslash \backslash$ little or no money in my purse, and nothing particular to interest me on shore, $\backslash \backslash I$ thought I would sail about a little and see the watery part of the world. (238 characters)
Grade 2 Braille in ASCII.
,call me ,i\%mael4 ,"‘s ye\$>\$s ago -- n"e m9d h[l;g
precisely -- hav+ $\ \backslash$ II or no m"oy 9 my purse 1
\& no?+
"picul\$>\$ 6 9t]e/ me on
%ore1 $\backslash 1$,i \$?\$"\$|\$,i wd sail ab a II
\& see! wat]y " p (! ! $\quad w 4$ (203 characters)

Compression ratio $=238 / 203=1.17$
CSE 521 - Arithmetic Coding - Spring 2003

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

CSE 521 - Arithmetic Coding - Spring $2003 \quad 4$

Lossless Compression

- Data is not lost - the original is really needed.
- text compression
- compression of computer binaries to fit on a floppy
- Compression ratio typically no better than $4: 1$ for lossless compression on many kinds of files.
- Statistical Techniques
- Huffman coding
- Arithmetic coding
- Golomb coding
- Dictionary techniques
- LZW, LZ77
- Sequitur
- Burrows-Wheeler Method
- Standards - Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

CSE 521 - Arithmetic Coding - Spring 2003

Why is Data Compression Possible

- Most data from nature has redundancy
- There is more data than the actual information contained in the data.
- Squeezing out the excess data amounts to compression.
- However, unsqeezing out is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

First-order Information

- Suppose we are given symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
- $P\left(a_{i}\right)=$ probability of symbol a_{i} occurring in the absence of any other information.
$-P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{m}\right)=1$
- $\inf \left(a_{i}\right)=-\log _{2} P\left(a_{i}\right)$ bits is the information of a_{i} in bits.

First Order Entropy

- The first order entropy is defined for a probability distribution over symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

$$
H=-\sum_{i=1}^{m} P\left(a_{i}\right) \log _{2}\left(P\left(a_{i}\right)\right)
$$

- H is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- H is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context. We'll talk about this later.

Reals in Binary

- Any real number x in the interval $[0,1)$ can be represented in binary as.$b_{1} b_{2} \ldots$ where b_{i} is a bit.

First Conversion

```
L := 0; R :=1; i := 1
while x > L *
        if }x<(L+R)/2 then \mp@subsup{b}{i}{}:=0;R:=(L+R)/2
        if }x\geq(L+R)/2 then \mp@subsup{b}{i}{}:=1;L:=(L+R)/2
        i:= i + 1
end{while}
bil:= 0 for all j \geqi
```

* Invariant: x is always in the interval [L,R)

Conversion using Scaling

- Always scale the interval to unit size, but x must be changed as part of the scaling

CSE 521 - Arithmetic Coding - Spring 2003

Binary Conversion with Scaling

$$
\begin{aligned}
& y:=x ; i:=0 \\
& \text { while } y>0 \text { * } \\
& \quad i:=i+1 ; \\
& \quad \text { if } y<1 / 2 \text { then } b_{i}:=0 ; y:=2 y ; \\
& \quad \text { if } y \geq 1 / 2 \text { then } b_{i}:=1 ; y:=2 y-1 ; \\
& \text { end }\{\text { while }\} \\
& b_{j}:=0 \text { for all } j \geq i+1
\end{aligned}
$$

* Invariant: $x=. b_{1} b_{2} \ldots b_{i}+y / 2^{i}$

Arithmetic Coding

Basic idea in arithmetic coding:

- represent each string x of length n by a unique interval $[L, R)$ in $[0,1)$.
- The width $r-l$ of the interval $[L, R)$ represents the probability of x occurring.
- The interval $[L, R)$ can itself be represented by any number, called a tag, within the half open interval.
- The k significant bits of the tag $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots$ is the code of x . That is, . $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots \mathrm{t}_{\mathrm{k}} 000 \ldots$ is in the interval $[\mathrm{L}, \mathrm{R})$.

Some Tags are Better than Others

Code Generation from Tag

- If binary tag is $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots=(\mathrm{L}+\mathrm{R}) / 2$ in $[\mathrm{L}, \mathrm{R})$ then we want to choose k to form the code $t_{1} t_{2} \ldots t_{k}$.
- Short code:
- choose k to be as small as possible so that

$$
\mathrm{L} \leq . \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}} 000 \ldots<\mathrm{R} .
$$

- Guaranteed code:
- choose $\mathrm{k}=\left\lceil\log _{2}(1 /(\mathrm{R}-\mathrm{L}))\right\rceil+1$
$-L \leq t_{1} t_{2} \ldots t_{k} b_{1} b_{2} b_{3} \ldots<R$ for any bits $b_{1} b_{2} b_{3} \ldots$
- for fixed length strings provides a good prefix code.
- example: [.000000000..., . $000010010 \ldots$), tag $=.000001001 \ldots$ Short code: 0
Guaranteed code: 000001

Example of Arithmetic Coding (1)

Guaranteed Code Example

- $P(a)=1 / 3, P(b)=2 / 3$.

CSE 521 - Arithmetic Coding - Spring 2003

Arithmetic Coding Algorithm

- $\mathrm{P}\left(\mathrm{a}_{1}\right), \mathrm{P}\left(\mathrm{a}_{2}\right), \ldots, \mathrm{P}\left(\mathrm{a}_{\mathrm{m}}\right)$
- $C\left(a_{i}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{i-1}\right)$
- Encode $x_{1} x_{2} \ldots x_{n}$

> | Initialize $\mathrm{L}:=0$ and $\mathrm{R}:=1$; |
| :--- |
| for $\mathrm{i}=1$ to n do |
| $W:=R-L ;$ |
| $L:=L+W^{*} C\left(x_{i}\right) ;$ |
| $R:=L+W^{*} P\left(x_{i}\right) ;$ |
| $t:=(L+R) / 2 ;$ |
| choose code for the tag |

Decoding (1)

- Assume the length is known to be 3

27

Decoding (3)

- Assume the length is known to be 3
- 0001 which converts to the tag .0001000..

Arithmetic Coding Example

- $P(a)=1 / 4, P(b)=1 / 2, P(c)=1 / 4$
- $C(a)=0, C(b)=1 / 4, C(c)=3 / 4$
- abca

$\operatorname{tag}=(5 / 32+21 / 128) / 2=41 / 256=.001010010 .$. $L=.001010000$...
$R=.001010100 \ldots$ code $=00101$ prefix code $=00101001$

CSE 521 - Arithmetic Coding - Spring 2003

Arithmetic Decoding Algorithm

- $P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{m}\right)$
- $C\left(a_{i}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{i-1}\right)$
- Decode $b_{1} b_{2} \ldots b_{m}$, number of symbols is n.

```
Initialize L:= 0 and R:=1;
t:= .b, b b \ldotsbm
for i=1 to n do
    W := R - L;
    find j such that L + W * C(aj) \leqt<L+W * (C(aj)+P(a))
    output a;
    L:=L+W W C(aj)
    R:=L+W* P(aj)
```


Decoding Issues

- There are two ways for the decoder to know when to stop decoding.

1. Transmit the length of the string
2. Transmit a unique end of string symbol

Integer Implementation

- m bit integers
- Represent 0 with 000... 0 (m times)
- Represent 1 with 111... 1 (m times)
- Probabilities represented by frequencies
- n_{i} is the number of times that symbol a_{i} occurs
$-\mathrm{C}_{\mathrm{i}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{i}-1}$
$-N=n_{1}+n_{2}+\ldots+n_{m}$
$W:=R-L+1$
$\begin{array}{ll}L^{\prime}:=\mathrm{L}+\left\lfloor\frac{\mathrm{W} \cdot \mathrm{C}_{i}}{\mathrm{~N}}\right\rfloor & \begin{array}{l}\text { Coding the i-th symbol using } \\ \text { integer calculations. }\end{array} \\ \mathrm{R}:=\mathrm{L}+\left\lfloor\frac{\mathrm{W} \cdot \mathrm{C}_{\mathrm{i}+1}}{\mathrm{~N}}\right\rfloor-1 & \text { Must use scaling! }\end{array}$
L:= L'
CSE 521 - Arithmetic Coding - Spring 2003

Arithmetic Coding with Context

- Maintain the probabilities for each context.
- For the first symbol use the equal probability model
- For each successive symbol use the model for the previous symbol.

Adaptation

- Simple solution - Equally Probable Model.
- Initially all symbols have frequency 1.
- After symbol x is coded, increment its frequency by 1
- Use the new model for coding the next symbol
- Example in alphabet a,b,c,d

Zero Frequency Problem

- How do we weight symbols that have not occurred yet.
- Equal weights? Not so good with many symbols
- Escape symbol, but what should its weight be?
- When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)

		a	a	b	a	a	c		After aabaac is encoded
a	0	1	2	2	3	4	4		The probability model is
b	0	0	0	1	1	1	1		a $4 / 7$
c b $1 / 7$									
d	0	0	0	0	0	0	1		c $1 / 7$

PPM

- Prediction with Partial Matching
- Cleary and Witten (1984)
- State of the art arithmetic coder
- Arbitrary order context
- The context chosen is one that does a good prediction given the past
- Adaptive
- Example
- Context "the" does not predict the next symbol "a" well. Move to the context "he" which does.

Arithmetic vs. Huffman

- Both compress very well. For m symbol grouping.
- Huffman is within $1 / \mathrm{m}$ of entropy.
- Arithmetic is within $2 / \mathrm{m}$ of entropy.
- Context
- Huffman needs a tree for every context.
- Arithmetic needs a small table of frequencies for every context.
- Adaptation
- Huffman has an elaborate adaptive algorithm
- Arithmetic has a simple adaptive mechanism.
- Bottom Line - Arithmetic is more flexible than Huffman.

Applications of Arithmetic Coding

- JPEG 2000
- Image compression
- Wavelet transform
- Bit-planes of the transformed image is adaptively arithmetic coded.
- Contexts relate to structure of wavelet coefficients
- JBIG
- Binary image compression
- Context is about 10 nearby pixels already coded.

