CSE 521 Assignment 8 Due Tuesday, May 27, 2003

- We consider the famous bin-packing problem defined as follows. We are given as input numbers s₁, s₂,..., s_n with 0 < s_i < 1. The output is a partition P of {1, 2, ..., n} such that for all X ∈ P, ∑_{i∈X} s_i ≤ 1 and the cardinality of P is minimized. Equivalently, we put the numbers s_i into bins of size 1 and minimize the number of bins. Solving this problem is NP-hard. A simple heuristic is called *first-fit* which considers s₁, s₂,..., s_i,... in order and places s_i in the first bin that it will fit. If none fit then a new bin is initiated for s_i. Let S = ∑_{i=1}ⁿ s_i.
 - (a) Show that an optimal solutions uses at least $\lceil S \rceil$ bins.
 - (b) Argue that the first-fit heuristic leaves at most one bin half-full.
 - (c) Show that the number of bins used by the first-fit heuristic is never more than $\lceil 2S \rceil$.
 - (d) Show that the approximation ratio of the first-fit heuristic is bounded above by 2.
 - (e) Show that the approximation ratio of the first-fit heuristic is bounded below by 3/2. This can be done by a simple example with four items of three different sizes.
 - (f) (extra credit) Show that the approximation ratio of the first-fit heuristic is bounded below by 5/3. This is a more complicated example, but only requires three different sizes.
- 2. In the SET-COVER problem we are given a set U of n members and a collection S₁,..., S_m of subsets of U. The goal is to find a minimum-size set-cover, that is, a minimum-size collection of input subsets, whose union is U. Example: U = {1, 2, 3, 4, 5, 6, 7}, S₁ = {1}, S₂ = {7}, S₃ = {2, 3, 4, 5, 6}, S₄ = {1, 4, 5, 7}. Then {S₃, S₄} is an optimal solution of size 2. The collection {S₁, S₂, S₃} is also a cover but its size is 3 so it is not optimal.
 - (a) Describe SET-COVER as an integer programming problem.
 - (b) Relax the integer constraints to get a linear programming problem.
 - (c) For $e \in U$, let r(e) be the number of subsets that include e. In the above example r(2) = 1, r(4) = 2. Let $r = \max\{r(e) : e \in E\}$. Given a solution to the relaxed LP, take as a potential set-cover the subsets whose corresponding variables have value at least 1/r. Show that the selected collection of subsets is a valid set-cover and that this is an r-approximation.