CSE 521

Assignment 8
 Due Tuesday, May 27, 2003

1. We consider the famous bin-packing problem defined as follows. We are given as input numbers $s_{1}, s_{2}, \ldots, s_{n}$ with $0<s_{i}<1$. The output is a partition P of $\{1,2, \ldots, n\}$ such that for all $X \in P, \sum_{i \in X} s_{i} \leq 1$ and the cardinality of P is minimized. Equivalently, we put the numbers s_{i} into bins of size 1 and minimize the number of bins. Solving this problem is NP-hard. A simple heuristic is called first-fit which considers $s_{1}, s_{2}, \ldots, s_{i}, \ldots$ in order and places s_{i} in the first bin that it will fit. If none fit then a new bin is initiated for s_{i}. Let $S=\sum_{i=1}^{n} s_{i}$.
(a) Show that an optimal solutions uses at least $\lceil S\rceil$ bins.
(b) Argue that the first-fit heuristic leaves at most one bin half-full.
(c) Show that the number of bins used by the first-fit heuristic is never more than $\lceil 2 S\rceil$.
(d) Show that the approximation ratio of the first-fit heuristic is bounded above by 2 .
(e) Show that the approximation ratio of the first-fit heuristic is bounded below by $3 / 2$. This can be done by a simple example with four items of three different sizes.
(f) (extra credit) Show that the approximation ratio of the first-fit heuristic is bounded below by $5 / 3$. This is a more complicated example, but only requires three different sizes.
2. In the SET-COVER problem we are given a set U of n members and a collection S_{1}, \ldots, S_{m} of subsets of U. The goal is to find a minimum-size set-cover, that is, a minimum-size collection of input subsets, whose union is U. Example: $U=\{1,2,3,4,5,6,7\}, S_{1}=\{1\}, S_{2}=$ $\{7\}, S_{3}=\{2,3,4,5,6\}, S_{4}=\{1,4,5,7\}$. Then $\left\{S_{3}, S_{4}\right\}$ is an optimal solution of size 2. The collection $\left\{S_{1}, S_{2}, S_{3}\right\}$ is also a cover but its size is 3 so it is not optimal.
(a) Describe SET-COVER as an integer programming problem.
(b) Relax the integer constraints to get a linear programming problem.
(c) For $e \in U$, let $r(e)$ be the number of subsets that include e. In the above example $r(2)=1, r(4)=2$. Let $r=\max \{r(e): e \in E\}$. Given a solution to the relaxed LP, take as a potential set-cover the subsets whose corresponding variables have value at least $1 / r$. Show that the selected collection of subsets is a valid set-cover and that this is an r-approximation.
