
1

CSE 521
Algorithms

Spring 2003

Competitive Analysis of List Update

CSE 521 - List Access Analysis - Spring 2003 2

On-Line List Update

• Maintain a list L with operations
– Access(x) – find x in the list

– Insert(x) – insert x into the list

– Delete(x) – delete x from the list

• Assumptions
– Operations arrive on-line with no knowledge of

future operations

– Search always from beginning of list with cost for
search

– List can be reorganized at cost

CSE 521 - List Access Analysis - Spring 2003 3

List Access Algorithms

• MF – Move-to-front
– On accessing x, move x to front of list

• T - Transpose
– On accessing x, move x one closer to front

• FC – Frequency Count
– Keep the members of the list in frequency count

order

CSE 521 - List Access Analysis - Spring 2003 4

Examples

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4MF x3, x1, x2, x4

Move-to-front

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4T x1, x3, x2, x4

Move closer

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4FC x1, x3, x2, x4

Update FC

5 3 3 2 5 3 4 2 5 4 3 2

CSE 521 - List Access Analysis - Spring 2003 5

Why These Algorithms

• These algorithms appear to be good ways to
maintain a list to minimize access cost.

• How well they perform compared to an
optimal off-line algorithm has a very
interesting theory.
– No obvious optimal algorithm

– Analysis can be done anyway using potential
functions and amortized analysis.

• Application of MF in data compession - BZIP

CSE 521 - List Access Analysis - Spring 2003 6

Cost Model
• Search cost

– Cost = distance from front of the list to where item
is located

• Transposition cost
– Free

• Accessed item is moved closer to the front of
the list. These transpositions are free because
we can insert anywhere we have already
accessed

– Paid
• All other movements of items cost of 1 for each

transposition.

2

CSE 521 - List Access Analysis - Spring 2003 7

Examples

x1, x2, x3, x4 x1, x2, x3, x4MF x3, x1, x2, x4

x1, x2, x3, x4 x1, x2, x3, x4T x1, x3, x2, x4

x1, x2, x3, x4 x1, x2, x3, x4FC x1, x3, x2, x4

5 3 3 2 5 3 4 2 5 4 3 2

3

3

3

0

0

0

x1, x2, x3, x4 x1, x2, x3, x4A x3, x2, x1, x4
2 1

paid transpositions
x1 and x2 change

search

CSE 521 - List Access Analysis - Spring 2003 8

Optimal Off-line Algorithm

• Given a finite sequence � of operations
(access, insert, delete). The optimal off-line
algorithm is one with minimum cost.
– Uses same cost model.
– Complete knowledge of the input sequence.

– The optimal algorithm may require an exponential
search to find the minimum.

CSE 521 - List Access Analysis - Spring 2003 9

Example

L = x1, x2, x3

Accesses x3, x2, x3, x2

x1, x3, x2 x2, x1, x3 x2, x3, x1x1, x2, x3 x3, x1, x2 x3, x2, x1

3
3 4 4 3

4

2

1
8 total cost is optimal

1
x2, x3, x1

x2, x3, x1

x2, x3, x1

CSE 521 - List Access Analysis - Spring 2003 10

Notation

• ALG(�)
– Cost of all operations of ALG on input �

• ALGC(�)
– Cost of all operations except for paid transpositions

• ALGP(�)
– Number of paid transpositions

• ALGF(�)
– Number of free transpositions

Note ALG(�) = ALGC(�) for ALG = MF, T, FC since all
use no paid transpositions

CSE 521 - List Access Analysis - Spring 2003 11

MTF Analysis

• Theorem: Let n =|�|
MF(�) < 2 OPTC(�) + OPTP(�) - OPTF(�) – n

• Corollary:
MF(�) < 2 OPT(�)

because OPT(�) = OPTC(�) + OPTP(�)

CSE 521 - List Access Analysis - Spring 2003 12

Potential Function

• �i = number of inversions in MTF’s list
relative to OPT’s list after i operations of �
completed.

• Example � = x3, x2, x3, x2

– Initial configuration L = x1, x2, x3

– MTF x1, x2, x3 � x3, x1, x2 � x2, x3, x1 � x3, x2, x1

– OPT x1, x2, x3 � x2, x3, x1 � x2, x3, x1 � x2, x3, x1

– �i 0 2 0 1
– i 0 1 2 3

3

CSE 521 - List Access Analysis - Spring 2003 13

Amortized Cost

• Amortized cost:
ai = ti + �i - �i-1
where ti is the cost of the i-th step of MTF

�ai = � ti + �n - �0

MF(�) = � ti = �ai + �0 - �n

MF(�) < �ai because �0 = 0.

CSE 521 - List Access Analysis - Spring 2003 14

Main Claim

• For step i, ai < (2Si-1) + Pi – Fi where
– Si is the search cost of the optimal algorithm in the

i-th step

– Pi is the number of paid transpositions in the
optimal algorithm in the i-th step

– Fi is the number of free transpositions in the
optimal algorithm in the i-th step

• This yields the theorem.

CSE 521 - List Access Analysis - Spring 2003 15

Access(xj) Analysis

• xj is in location j in OPT’s list.
• xj in location k in MTF’s list.
• Red items are to left in MTF’s list, but to right

on OPT’s list. These are inversions relative
to xj.

xjMTF

xjOPT

k

j

1

1

CSE 521 - List Access Analysis - Spring 2003 16

Access(xj) Analysis

• Suppose v inversions relative to xj

• k - 1 – v items are not inversions.

• k - 1 – v < j – 1 because non inversions must be to
left of xj in OPT’s list.

• Before OPT processes the request MTF removes v
inversions and introduces k-1-v inversions.

• Before OPT processes the request we have
ai = ti + �i - �i-1 = k + (k-1-v) – v = 2(k-v) –1

< 2j-1
= 2Si - 1

CSE 521 - List Access Analysis - Spring 2003 17

Access(xj) Analysis

xjMTF

xjOPT

k

j

1

1

xjMTF

k1

v is the amount of red
k - 1 – v < j – 1

CSE 521 - List Access Analysis - Spring 2003 18

Access(xj) Analysis

• OPT
Si = j search cost

< Pi inversions for paid transpositions made by OPT

= -Fi inversions for free transpositions made by OPT

• Summarizing
ai = ti + �i - �i-1 < 2Si + Pi – Fi –1

• Analysis of Insert and Delete is similar.

4

CSE 521 - List Access Analysis - Spring 2003 19

T and FC not Competitive

• T- Always access last item on list
– Let m be the length of the list.

– Every two accesses take 2m access time.

– xm and xm-1 just exchange places

• Better algorithm
– In the first access move the last two items to the

front of the list.

– From this moment on every two accesses cost 3.

• FC has a similar bad sequence.

CSE 521 - List Access Analysis - Spring 2003 20

Notes

• Competitive Analysis can be done without
knowledge of the optimal algorithm or good
bound on the optimal.
– Pioneered by Sleator and Tarjan (1985) in CACM!

• Neither FC nor T are competitive.

