CSE 521
Algorithms
Spring 2003

Competitive Analysis of List Update

List Access Algorithms

- MF - Move-to-front
- On accessing x , move x to front of list
- T-Transpose
- On accessing x , move x one closer to front
- FC - Frequency Count
- Keep the members of the list in frequency count order

Why These Algorithms

- These algorithms appear to be good ways to maintain a list to minimize access cost.
- How well they perform compared to an optimal off-line algorithm has a very interesting theory.
- No obvious optimal algorithm
- Analysis can be done anyway using potential functions and amortized analysis.
- Application of MF in data compession - BZIP

On-Line List Update

- Maintain a list L with operations
- Access(x) - find x in the list
- Insert(x) - insert x into the list
- Delete $(\mathrm{x}$) - delete x from the list
- Assumptions
- Operations arrive on-line with no knowledge of future operations
- Search always from beginning of list with cost for search
- List can be reorganized at cost

Cost Model

- Search cost
- Cost = distance from front of the list to where item is located
- Transposition cost
- Free
- Accessed item is moved closer to the front of the list. These transpositions are free because we can insert anywhere we have already accessed
- Paid
- All other movements of items cost of 1 for each transposition.

Optimal Off-line Algorithm

- Given a finite sequence σ of operations (access, insert, delete). The optimal off-line algorithm is one with minimum cost.
- Uses same cost model.
- Complete knowledge of the input sequence.
- The optimal algorithm may require an exponential search to find the minimum.

Notation

- ALG(σ)
- Cost of all operations of ALG on input σ
- $\mathrm{ALG}_{\mathrm{c}}(\sigma)$
- Cost of all operations except for paid transpositions
- $\mathrm{ALG}_{\mathrm{p}}(\sigma)$
- Number of paid transpositions
- $\mathrm{ALG}_{\mathrm{F}}(\sigma)$
- Number of free transpositions

Note $\mathrm{ALG}(\sigma)=\mathrm{ALG}_{\mathrm{c}}(\sigma)$ for $\mathrm{ALG}=\mathrm{MF}, \mathrm{T}$, FC since all use no paid transpositions

MTF Analysis

- Theorem: Let $\mathrm{n}=|\sigma|$
$\mathrm{MF}(\sigma) \leq 2 \mathrm{OPT}_{\mathrm{C}}(\sigma)+\mathrm{OPT}_{\mathrm{P}}(\sigma)-\mathrm{OPT}_{\mathrm{F}}(\sigma)-\mathrm{n}$
- Corollary:
$\mathrm{MF}(\sigma) \leq 2 \mathrm{OPT}(\sigma)$
because OPT $(\sigma)=\mathrm{OPT}_{\mathrm{C}}(\sigma)+\mathrm{OPT}_{\mathrm{P}}(\sigma)$

Potential Function

- $\Phi_{i}=$ number of inversions in MTF's list relative to OPT's list after i operations of σ completed.
- Example $\sigma=\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{2}$
- Initial configuration $L=x_{1}, x_{2}, x_{3}$
- MTF $x_{1}, x_{2}, x_{3} \rightarrow x_{3}, x_{1}, x_{2} \rightarrow x_{2}, x_{3}, x_{1} \rightarrow x_{3}, x_{2}, x_{1}$
- OPT $x_{1}, x_{2}, x_{3} \rightarrow x_{2}, x_{3}, x_{1} \rightarrow x_{2}, x_{3}, x_{1} \rightarrow x_{2}, x_{3}, x_{1}$
$\begin{array}{lllll}-\Phi_{i} & 0 & 2 & 0 & 1 \\ -i & 0 & 1 & 2 & 3\end{array}$

CSE 521 - List Access Analysis - Spring 2003

Amortized Cost

- Amortized cost:
$\mathrm{a}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}+\Phi_{\mathrm{i}}-\Phi_{\mathrm{i}-1}$
where t_{i} is the cost of the i-th step of MTF
$\sum \mathrm{a}_{\mathrm{i}}=\sum \mathrm{t}_{\mathrm{i}}+\Phi_{\mathrm{n}}-\Phi_{0}$
$M F(\sigma)=\sum \mathrm{t}_{\mathrm{i}}=\sum \mathrm{a}_{\mathrm{i}}+\Phi_{0}-\Phi_{\mathrm{n}}$
$M F(\sigma) \leq \Sigma \mathrm{a}_{\mathrm{i}}$ because $\Phi_{0}=0$.

Access $\left(\mathrm{x}_{\mathrm{j}}\right)$ Analysis

- x_{i} is in location j in OPT's list.
- x_{j} in location k in MTF's list.
- Red items are to left in MTF's list, but to right on OPT's list. These are inversions relative to x_{j}.
- Suppose v inversions relative to x_{j}
- $\mathrm{k}-1-\mathrm{v}$ items are not inversions.
- $k-1-v \leq j-1$ because non inversions must be to left of x_{j} in OPT's list.
- Before OPT processes the request MTF removes v inversions and introduces $\mathrm{k}-1-\mathrm{v}$ inversions.
- Before OPT processes the request we have
$a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}=k+(k-1-v)-v=2(k-v)-1$ $\leq 2 \mathrm{j}-1$
$=2 S_{i}-1$

Access(x_{j}) Analysis

- OPT
$\mathrm{S}_{\mathrm{i}}=\mathrm{j}$ search cost
$\leq P_{i}$ inversions for paid transpositions made by OPT
$=-F_{i}$ inversions for free transpositions made by OPT
- Summarizing
$\mathrm{a}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}+\Phi_{\mathrm{i}}-\Phi_{\mathrm{i}-1} \leq 2 \mathrm{~S}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}-\mathrm{F}_{\mathrm{i}}-1$
- Analysis of Insert and Delete is similar.

T and FC not Competitive

- T- Always access last item on list
- Let m be the length of the list.
- Every two accesses take $2 m$ access time.
$-x_{m}$ and x_{m-1} just exchange places
- Better algorithm
- In the first access move the last two items to the front of the list.
- From this moment on every two accesses cost 3.
- FC has a similar bad sequence.

