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Instructor: Venkatesan Guruswami

1 Randomized Rounding

Given an instance of MaxSAT consisting of m clauses C1, . . . , Cm over n variables x1, x2, . . . , xn, the
following is an integer linear programming formulation of the problem. In what follows, we use the
notation pos(Cj) = {i | xi occurs positively in Cj}, and neg(Cj) = {i | xi occurs negatively in Cj}

The ILP formulation: We use a variable yi to indicate if xi is set to True of False, and a variable
zj to indicate whether a clause is satisfied or not.
Maximize

∑
j zj

subject to
∀j,

∑
i∈pos(Cj)

yi +
∑

i∈neg(Cj)
(1− yi) ≥ zj

yi ∈ {0, 1} for i = 1, 2, . . . , n,
zj ∈ {0, 1} for j = 1, 2, . . . ,m.

The LP relaxation is obtained by relaxing the integrality constraints on yi, zj to 0 ≤ yi ≤ 1 and
0 ≤ zj ≤ 1.
Fact: The optimum value of the above LP, cLP, is at least OPT, where OPT is the maximum
number of clauses that can be satisfied in the given MaxSAT instance.

The approximation algorithm proceeds by solving the above LP to find an optimal solution
(y∗, z∗). It then sets each xi independently to True with probability y∗i and False with probability
1 − y∗i . This technique is called Randomized Rounding, and is a powerful, widely used one in
approximation algorithms.

Let Z denote the random variable that equals the number of clauses satisfied by the above
algorithm. We wish to estimate E[Z], and compare it with OPT. For each j = 1, 2, . . . ,m, define
the indicator random variable Zj for the event that Cj is satisfies. Then Z =

∑m
j=1 Zj , so we turn

to estimating E[Zj ]. For each integer k ≥ 1, define αk = 1− (1− 1/k)k.

Lemma 1 If Cj has k distinct literals, then

E[Zj ] ≥ αkz
∗
j =

(
1−

(
1− 1

k

)k
)

z∗j .

Proof: We can assume without loss of generality that all literals of Cj are positive. (Indeed, if
not and xi appears negated, we can just replace xi with x̄i throughout and change y∗i to 1 − y∗i ,
without affecting z∗j and Zj .) Also by renaming variables, we assume Cj = (x1 ∨ x2 ∨ . . . xk).
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The probability that Cj is satisfied is

1−
k∏

i=1

(1− y∗i ) ≥ 1−

(∑k
i=1(1− y∗i )

k

)k

= 1−

(
1−

∑k
i=1 y∗i
k

)k

≥ 1−
(

1−
z∗j
k

)k

where we used the AM-GM inequality and the fact that
∑k

i=1 y∗i ≥ z∗j .
Now the function f(z) = 1 − (1 − z/k)k is a concave function with f(0) = 0 and f(1) =

1− (1− 1/k)k, and so f(z) ≥ (1− (1− 1/k)k)z = αkz for 0 ≤ z ≤ 1. It follows that the probability
that Cj is satisfied, which is also E[Zj ], is at least (1− (1− 1/k)k)z∗j , as claimed. �

Since (1 − 1/k)k ≤ 1/e for all k ≥ 1, it follows that αk ≥ (1 − 1/e) for all k ≥ 1. Hence
E[Zj ] ≥ (1− 1/e)z∗j for each j. Therefore

E[Z] =
m∑

j=1

E[Zj ] ≥ (1− 1/e)
m∑

j=1

z∗j = (1− 1/e)cLP ≥ (1− 1/e)OPT .

We therefore have a randomized approximation algorithm which delivers a solution with ex-
pected value at least (1− 1/e) times the maximum number of satisfiable clauses.

2 Improving the approximation ratio

We now consider the following algorithm: Pick b ∈ {0, 1} uniformly at random. If b = 0 run the
above algorithm, and if b = 1 pick a random, independent assignment to the xi’s.

Define the notation βk = (1 − 2−k) for k ≥ 1. Using the same notation as above, for this
algorithm, we have E[Zj | b = 0] ≥ αkz

∗
j and E[Zj | b = 1] = βkz

∗
j . Combining these we get

E[Zj ] =
1
2 E[Zj | b = 0] +

1
2 E[Zj | b = 1] ≥ αk + βk

2
z∗j .

Now α1 + β1 = α2 + β2 = 3/2 and αk + βk ≥ 7/8 + (1− 1/e) ≥ 3/2 for k ≥ 3. Therefore

E[Z] =
m∑

j=1

E[Zj ] ≥
3
4

m∑
j=1

z∗j =
3
4
cLP ≥ 3

4
OPT .

We thus have a randomized 4/3-approximation algorithm for MaxSAT.
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