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Matching

Matching.
« Input: undirected graph G = (V, E).
= M CE is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

7.5 Bipartite Matching

Bipartite Matching

Bipartite matching.

« Input: undirected, bipartite graph 6 = (L U R, E).

= M CE is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

matching
1-2', 3-1', 4-5'




Bipartite Matching

Bipartite matching.

« Input: undirected, bipartite graph 6 = (L U R, E).

= M CE is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

« Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

« fisaflow, and has cardinality k. =

®
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Bipartite Matching

Max flow formulation.
« Create digraph 6' = (LURU {s, 1}, E").
« Direct all edges from L to R, and assign infinite (or unit) capacity.
= Add source s, and unit capacity edges from s to each node in L.
« Add sink t, and unit capacity edges from each node in R fo ¥.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. =
« Let f be amax flow in G' of value k.
« Integrality theorem = ks integral and can assume f is O-1.
. Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M] = k: consider cut (LUs,RUT) =
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Perfect Matching

Def. A matching M C E is perfect if each node appears in exactly one

edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

« Clearly we must have |L| = |R].
« What other conditions are necessary?
» What conditions are sufficient?

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR, E) be a

bipartite graph with [L| = |R|. Then, G has a perfect matching iff

IN(S)| = |S| for all subsets SCL.

Pf. = This was the previous observation.

No perfect matching:

5=(2,4,5}
N(s)={2',5'}.

Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If abipartite graph 6= (L U R, E), has a perfect
matching, then [N(S)| = |S| for all subsets S C L.
Pf. Each node in S has to be matched to a different node in N(S).

@

No perfect matching:
S={(2,4,5}
N©)={2',5"}.

Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.

. Formulate as a max flow problem and let (A, B) be min cut in G'.
« By max-flow min-cut, cap(A, B) < | L]|.

« DefinelL,=LNA, Lg=LNB, Ry,=RNA.

« cap(A,B) = |Lgl|+|R4l.

. Since min cut can't use © edges: N(L,) C R,.

« IN(LAO)I=1R4| = cap(A,B)-[Lgl < ILI-ILgl = [Lal.

« Choose S=L,. =

®
L= (2,4 5)
Lg={1,3}
® R,z (2,5
@ N(L,) ={2", 5"}



Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
« Generic augmenting path: O(m val(f*)) = O(mn).
« Capacity scaling: O(m? log C) = O(m?).
. Shortest augmenting path: O(m nl/2),

Non-bipartite matching.
« Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
« Blossom algorithm: O(n*). [Edmonds 1965]
« Best known: O(m n'/2), [Micali-Vazirani 1980]

Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and
t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

7.6 Disjoint Paths

Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and
t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.




Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-1 paths equals max flow value.
Pf. <

= Suppose there are k edge-disjoint paths P, ..., Py

« Set f(e) = 1if e participates in some path P;; else set f(e) = 0.

=« Since paths are edge-disjoint, f is a flow of value k. =

Network Connectivity

Network connectivity. Given a digraph G = (V, E) and two nodes s and
t, find min number of edges whose removal disconnects t from s.

Def. A set of edges F C E disconnects t from s if all s-t paths uses at
least on edge in F.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-1 paths equals max flow value.
Pf. =
= Suppose max flow value is k.
« Integrality theorem = there exists 0-1 flow f of value k.
« Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a hew edge
=« Produces k (not necessarily simple) edge-disjoint paths. =

can eliminate cycles to get simple paths if desired

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =
. Suppose the removal of F C E disconnects t from s, and |F| = k.
« All s-t paths use at least one edge of F. Hence, the number of edge-
disjoint paths is at most k. =




Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =
= Suppose max number of edge-disjoint paths is k.
« Then max flow value is k.
= Max-flow min-cut = cut (A, B) of capacity k.
« Let F be set of edges going from A to B.
« |F| = kand disconnects t froms. =

Circulation with Demands

Circulation with demands.
« Directed graph 6 = (V, E).
. Edge capacities c(e), e € E.

» Node supply and demands d(v), veE V.
t

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = O

Def. A circulation is a function that satisfies:

. Foreache€eE: 0 = f(e) = c(e) (capacity)
. ForeachveV: Sfle)y - Sfle) = d(v) (conservation)
eintov e out of v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?

7.7 Extensions to Max Flow

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.

Sd(v) -

vid(v)>0

S -d(v) == D

vid(v)< 0

Pf. Sum conservation constraints for every demand node v.
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Circulation with Demands

Max flow formulation.
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Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for
max flow.

Characterization. Given (V, E, ¢, d), there does not exists a circulation
iff there exists a node partition (A, B) such that =, d, > cap(A, B)

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

Pf idea. Look at min cut inG"'.

Circulation with Demands

Max flow formulation.
« Add new source s and sink t.
« For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
« For each v with d(v) > 0, add edge (v, ) with capacity d(v).
« Claim: G has circulation iff ' has max flow of value D.

saturates all edges

/7% leaving s and entering t
7 8 6 —
7 7

9
4

6 4
0
10 \@/ e—— demand

Circulation with Demands and Lower Bounds

Feasible circulation.
« Directed graph 6 = (V, E).
« Edge capacities c(e) and lower bounds ¢ (e), e € E.

» Node supply and demands d(v), vE V.

Def. A circulation is a function that satisfies:

. Foreache€c€E: ((e) = fle) = c(e) (capacity)
. ForeachveV: Sfle) - Yfle) = dv) (conservation)
eintov e out of v

Circulation problem with lower bounds. Given (V, E, 4, c, d), does there
exists a a circulation?



Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
= Send {e) units of flow along edge e.

« Update demands of both endpoints.

lower bound upper bound capacity
I !
@ 5@ @—7—@
d(v) d(w) d(v)+2 dw) - 2
G G

Theorem. There exists a circulation in G iff there exists a circulation
in G'. If all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

Pf sketch. f(e)is a circulation in 6 iff f'(e) = f(e) - {e) is a circulation
inG'.

Survey Design

Survey design.
= Design survey asking n; consumers about n, products.
=« Can only survey consumer i about a product j if they own it.
« Ask consumer i between c; and ¢;' questions.
« Ask between p; and p;" consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc¢;=¢;'=p,=p,' = 1.

31

7.8 Survey Design

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.

« Include an edge (i, j) if customer own product i.
« Integer circulation < feasible survey design.

consumers

products



7.10 Image Segmentation

Image Segmentation

Foreground / background segmentation.

=« Label each pixel in picture as belonging to

foreground or background.

« V= set of pixels, E = pairs of neighboring pixels. ]

= a;= 0 is likelihood pixel i in foreground.

« b;= 0 is likelihood pixel i in background.
= p;j= O is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
« Accuracy: if g; > b; in isolation, prefer to label i in foreground.
= Smoothness: if many neighbors of i are labeled foreground, we
should be inclined to label i as foreground.
= Find partition (/A, B\)’rha‘r maximizes:  Ya,+ 3b; - I p;

€4 JEB (i,j)EE
foreground  background [ ANG,j3 | =1

Image Segmentation

Image segmentation.
« Central problem in image processing.
= Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

Image Segmentation

Formulate as min cut problem.
= Maximization.
= No source or sink.
« Undirected graph.

Turn into minimization problem.

« Maximizing _EEA“f‘“g;’j . _)EEEPIJ‘
i J i,j
[ANG,j} =1

is equivalent to minimizing (3, a; +3,cyb;) - Sa, - b, + I p;
\ev s fievy

€A JjEB (i,))EE
a constant [ANGEj}] =1
. or alternatively Sa;+3b + I p;
JEB i€4 (i,))EE
| AN} =1



Image Segmentation

Formulate as min cut problem. O« p; —0O
. 6'=(V',E).
= Add source to correspond to foreground; 5: Pij :
add sink to correspond to background Pi

= Use two anti-parallel edges instead of

undirected edge.
O«——0
Pij @
b,

i

o

O

7.11 Project Selection

Image Segmentation

Consider min cut (A, B) in G'.
« A =foreground.

cap(A,B) = Ya;+3y b+ 3T p;

= = ()eE if i and j on different sides,
i€A, jEB <«— Py counted exactly once

« Precisely the quantity we want to minimize.

O« 0« —0«—0
1]
Pij @
b.

i

Project Selection

. . .. can be positive or negative
Projects with prerequisites. '

= Set P of possible projects. Project v has associated revenue p,.
- some projects generate money: create interactive e-commerce
interface, redesign web page
- others cost money: upgrade computers, get site license
« Set of prerequisites E. If (v,w)€EE, can't do project v and unless
also do project w.
« A subset of projects A CP is feasible if the prerequisite of every
project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

40



Project Selection: Prerequisite Graph Project Selection: Min Cut Formulation

Prerequisite graph. Min cut formulation.
« Include an edge from v to w if can't do v without also doing w. . Assignh capacity « to all prerequisite edge.
« {v,w, x} is feasible subset of projects. = Add edge (s, v) with capacity p, if p, > 0.
« {v, x} is infeasible subset of projects. = Add edge (v, t) with capacity -p, if p, < 0.

« For notational convenience, define p,= p, = Q.

feasible infeasible
Project Selection: Min Cut Formulation Open Pit Mining
Claim. (A, B) is min cut iff A - { s} is optimal set of projects. Open-pit mining. (studied since early 1960s)
« Infinite capacity edges ensure A - {s} is feasible. « Blocks of earth are extracted from surface to retrieve ore.
= Max revenue because: cap(A, B) = Sp, + 3(-p,) « Each block v has net value p, = value of ore - processing cost.

VEB:p, >0 vEA:p, <0

= 3P, - 2P,

vip,>0 VEA
—

. Can't remove block v before w or x.

constant

43




7.12 Baseball Elimination

Team Wins | Losses
i w; l;
83

Atlanta

Philly 80 79

New York 78 78
Montreal 77 82

"See that thing in the paper last week about Einstein? . . .
Some reporter asked him to figure out the mathematics of
the pennant race. You know, one team wins so many of their
remaining games, the other teams win this number or that
number. What are the myriad possibilities? Who's got the
edge?"

"The hell does he know?" UilbERkGRLD
"Apparently not much. He picked the Dodgers \
to eliminate the Giants last Friday."

- Don DelLillo, Underworld

Baseball Elimination

Against = ry;

= 1 6 1

= 0
6 0 =
0 o

71

o n

Which teams have a chance of finishing the season with most wins?
« Philly can win 83, but still eliminated . . .
« If Atlanta loses a game, then some other team wins one.

Remark. Answer depends hot just on how many games already won and
left to play, but also on whom they're against.

47

Baseball Elimination

Atlanta 83 71 - 1 6 1

= 0
6 0 =
0 o

n

Philly 80 79
New York 78 78

Which teams have a chance of finishing the season with most wins?
Montreal eliminated since it can finish with at most 80 wins, but
Atlanta already has 83.

« wi+ri<w; = teami eliminated.

= Only reason sports writers appear to be aware of.

. Sufficient, but not necessaryl!

o

Baseball Elimination

TUESOAY; SEPIEMBER 10, 1996

§ San Francisco Clironicle o
e e oo |
Sports Online
| > hitp: //www.sigate.com
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Baseball Elimination Baseball Elimination: Max Flow Formulation

Baseball elimination problem. Can team 3 finish with most wins?
« Set of teams S. « Assume team 3 wins all remaining games = wj3 + r3 wins.
= Distinguished team s € S. = Divvy remaining games so that all teams have = ws + r3 wins.

» Team x has won w, games already.
« Teams x and y play each other r,, additional times.
« Is there any outcome of the remaining games in which team s
finishes with the most (or tied for the most) wins? o

team 4 can still
-4 win this many

games left /@ more games
o]

® roa=7 @ @D w; +r; - w, ——(D)
2-5
®
game nodes @ team nodes
Baseball Elimination: Max Flow Formulation Baseball Elimination: Explanation for Sports Writers

Theorem. Team 3 is not eliminated iff max flow saturates all edges - -
Theoren Te CET NN Ve W
' * W, | ri | NY | Bal | Bos | Tor | Det |
NY 75 59 7 3

« Integrality theorem = each remaining game between x and y 28 3 3 8
added to number of wins for team x or teamy.

. . Baltimore 71 63 28 3 - 2 7 4
« Capacity on (x, t) edges ensure no team wins foo many games.
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - =
= @ 49 8 27 3 4 0 0 -
" team 4 can still AL East: August 30, 1996
a win this many

games left /@ more games
[ee]

15 Which teams have a chance of finishing the season with most wins?
. Detroit could finish season with 49 + 27 = 76 wins.

®

game nodes @ team nodes

51



Baseball Elimination: Explanation for Sports Writers

i Wi l ri | NY [ Bal | Bos | Tor | Def |
NY 75 59 28 - 7 3

3 8
Baltimore 71 63 8 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 = =

49 86 27 3 4 0 o0 -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
. Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}
« Have already won w(R) = 278 games.
= Must win at least r(R) = 27 more.
« Average team in R wins at least 305/4 > 76 games.

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
« Use max flow formulation, and consider min cut (A, B).
« Define T* = feam nodes on source side of min cut.
« Observe x-y € A iff bothx€ T*andy € T,
- infinite capacity edges ensure if x-y € A thenx€ Aandy € A
-if x€ Aandy € A but x-y € T, then adding x-y to A decreases
capacity of cut

team x can still win this

many more games
games left Y 9

w,+r, -w,—%)

Baseball Elimination: Explanation for Sports Writers

Certificate of elimination.

# wins # remaining games
TCS, wl)= S w,, gT)= S8y -
ieT {xy}CT

LB on avg # games won

——
1 wD+ed)

v >w_ +g, thenziseliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists
a subset T* that eliminates z.

Proof idea. Let T* = feam nodes on source side of min cut.

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
« Use max flow formulation, and consider min cut (A, B).
. Define T* = team nodes on source side of min cuft.
« Observe x-y € A iff bothx€ T*andy € T,
= 8(S-{z}) > cap(A, B)
capacity of game edges leaving's  capacity of team edges leaving s

8S={zhH-gT* + Fw +g-w,)

XET*

S ={zh)-g(T*) - w(T*) + IT*I(w_ +g.)

w(T™*)+g(T™*)

« Rearranging tferms:  w_+g. < 75



Extra Slides

k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [Kdnig 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in 6'. Consider flow:
1/k if (u,v)EE
fayy = {1

0 otherwise

if u=s or v=t¢

« fisaflowand its value = n = perfect matching. =

@ 1 ®
17k »_
1 flow f
G @ 11

®@ ® ©
@ & @

k-Regular Bipartite Graphs

Dancing problem.

Exclusive Ivy league party attended by n men and n women.

Each man knows exactly k women; each woman knows exactly k men.
Acquaintances are mutual.

Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

Q0
Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching? @——eeeeee——(®)
Ex. Boolean hypercube. ©, 3
@ @
® G
women men

Census Tabulation (Exercise 7.39)

Feasible matrix rounding.

Given a p-by-q matrix D = {d;;} of real numbers.

Row i sum = @;, column j sum b;.

Round each d;j, a;, bj up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.

Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

314 68 73 L 3 7
96 24 o7 [FEE 0 2 1 [
36 12 65 |BE IR

original matrix

6 | 0 |15

feasible rounding



Census Tabulation Census Tabulation

Feasible matrix rounding.

» Given a p-by-q matrix D = {d;;} of real numbers.

» Row i sum = a;, column j sum b;.

= Round each dj;, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.

=« Original application: publishing US Census data.

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
=« Original data provides circulation (all demands = 0).
« Integrality theorem = integral solution = feasible rounding. =

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

lower bound upper bound
N 7

314 68 73 Ry

| 17.24 |
96 24 07
| 13 |

3.6 12 6.5 11.3
035 035 035 o o 1 e TYRRTE
055 055 055 1 1 o 1634 | 104 | 145

[ 09 | 09 1 09

original matrix feasible rounding

row column

61



