
CSE521 Homework 2 Solution

Problem 1. We construct hierarchical nets Ni’s such that Ni ⊆ Ni−1 for all i > 1 as follows. First, Nk –
the highest level net – contains an arbitrary node; then each Ni for n−1 > i > 0 are constructed recursively
in two steps: (i) select all node in Ni+1; (ii) while there is still a node of distance at least 2i from all the
selected node, select it. It is easy to see that this construction works.

Now, for each x ∈ Ni\Ni+1, there must be some y ∈ Ni+1 such that d(x, y) 6 2i+1. We let p(x) = y, and
say that x is a child of y and y is the parent of x. The data structure we will maintain are the hierarchical
nets and this parent-child relationship. For convenience, we will maintain the link from each node to all of
its children. This can at most double the space required, which is clearly linear in the size of the metric X.

Note that we do not store the lists Lx,i’s – this is why we can use only a linear amount of space. Instead,
we will construct the lists Lq,i’s “on-the-fly” when we find q. First Lq,k+1 contains exactly one point – the
only point in Nk. Then the following lemma gives us a relationship between Lq,i and Lq,i−1 which we will
utilize to compute Lq,i−1 from Lq,i.

Lemma 1 For any y ∈ Lx,i−1, either y ∈ Lx,i or p(y) ∈ Lx,i.

Proof. Recall that y ∈ Lx,i−1 = B(x, 2i)∩Ni−2. Consider two cases

1. y ∈ Ni−1. Then y ∈ B(x, 2i+1)∩Ni−1 = Lx,i because B(x, 2i) ⊆ B(x, 2i+1).

2. y ∈ Ni−2\Ni−1. Then p(y) ∈ Ni−1 and d(y, p(y)) 6 2i−1 by the definition of p(y). We have:

d(x, p(y)) 6 d(x, y) + d(y, p(y)) (1)

6 2i + 2i−1 (2)

6 2i+1 (3)

where (1) is the triangle inequality in metric X, and (2) follows from the fact that y ∈ B(x, 2i) and the
definition of p(y). Thus, p(y) ∈ B(x, 2i+1), which means it is in Lx,i = B(x, 2i+1)∩Ni−1.

Let Sq,i = {y ∈ Ni−1|p(y) ∈ Lq,i+1}∪Lq,i+1; then the lemma implies that Lq,i ⊆ Sq,i. Thus, we can
compute Lq,i by first enumerating all elements of Sq,i using the links from the points in Lq,i+1 to their
children, then removing those elements that are not in B(q, 2i+1). Since |Lq,i+1| is a constant (at most
[λ(X, d)]3), this could be done in constant time if the number of children of each node is a constant. However,
this may not be the case.

To achieve constant running time, we first define the true level of a point y, denoted by `(y), to be
the largest i where y ∈ Ni. Now, let S∗q,i = {y|`(y) = i − 1 and p(y) ∈ Lq,i+1}∪Lq,i+1. We claim that
Lq,i ⊆ S∗q,i. To do so, we only need to prove that any point in Sq,i\S∗q,i is not in Lq,i. Consider such a point
x. Then `(x) > i, so x ∈ Ni. But since x /∈ S∗q,i, we have x /∈ Lq,i+1. Thus, x /∈ B(q, 2i+1), which means
x /∈ B(q, 2i). Hence, x /∈ Lq,i as required.

With this, we can compute Lq,0 – which will give us the answer – in time O
(∑k+1

i=0 |S∗q,i|
)

by enumerating
and pruning from S∗q,i at each step. To show that this running time is O (k), we only need to show that
each S∗q,i is of constant size. As argued above, this reduces to proving that each node has at most a constant
number of children of any true level – we can easily store the children of a node so that retrieving the list of
children of a certain true level can be done in time proportional to the number of children retrieved.

1

Consider a point x and its children y1, y2, . . . yt such that `(yj) = i for all j. Then all y1, y2, . . . yt are
in the ball B(x, 2i+1). B(x, 2i+1) can be covered by λ(X, d)2 balls of radius 2i−1, none among which contain
two points among y1, y2, . . . yt, for otherwise the distance between these two points would be smaller than
2i. Thus, t 6 λ(X, d)2 as required. This completes the proof.

Problem 2.

1. Let g(n) = 2blog nc, i.e. g(n) is the largest power of 2 that is not bigger than n. Then we define the
potential function Φi = 2(i − g(i)). Clearly Φ1 = 0 and Φi > 0. We claim that Φi − Φi−1 + f(i) 6 3

for all i. This will shows that the amortized cost of each operation is O (1).

Consider two cases

(a) i = 2k for some k. Then Φi = 0, Φi−1 = 2(2k − 1 − 2k−1) and f(i) = 2k. Hence,

Φi − Φi−1 + f(i) = −2(2k−1 − 1) + 2k = 2. (4)

(b) 2k < i < 2k+1 for some i. Then i − 1 > 2k. Thus, Φi = 2(i − 2k), Φi−1 = 2(i − 2k − 1) and
f(i) = 1. Hence,

Φi − Φi−1 + f(i) = 2 + 1 = 3. (5)

2. We assume that allocating new hash table takes O (1) time and let ki and ni be the number of elements
in the hash table and the hash table’s size at time i respectively. Then define

Φi =





0 if
3ni

8
6 ki 6 ni

2

3
(
ki −

ni

2

)
if ki >

ni

2

2

(
3ni

8
− ki

)
if k <

3ni

8

(6)

With this, checking that for any i > 1, Φi − Φi−1 + c(i) 6 C for some constant C where c(i) is the
cost of the ith operation is a matter of case by case analysis and algebra.

However, there’s still one delicate point: the total cost of a sequence of i operations is upperbounded
by Ci − Φi + Φ0, which is not immediately linear in i since Φ0 6= 0. Therefore, in order to conlude
that the amortized cost of each operation is O (1), we need to establish that Φ0 − Φi 6 iD for some
constant D. We show this by considering two cases.

• i 6 3n0

8 ; then ni = n0 and ki = i. Thus Φ0 − Φi = ki = i.

• i > 3n0

8 ; then obviously Φ0 6 i.

This completes the proof.

3. Assume that the cost of each stack operation is 1 and let Si and So denote the size of the in and out
stacks respectively. Then, define φi = 2Si. Clearly φ0 = 0 and φi > 0 for all i. There are three kind
of operations: the insertions, the “normal” deletions which do not cause a stack transfer and the “bad”
deletions that cause a stack transfer. One can easily check that φi − φi−1 + ci 6 2. Therefore, the
amortized cost of each operation is O (1).

Problem 3.

1. Let hf(i) = df(s, i) be the height of i in the BFS tree of Gf and (s = p ′1)p ′2p ′3 · · · (p ′k = v) be the
shortest path from s to v in Gf′ .

First, note that for any edge ij ∈ Gf, |hf(i) − hf(j)| 6 1. In addition, for any edge i ′j ′ ∈ Gf′ , either
ij ∈ Gf or ji ∈ Gf. Thus for any edge i ′j ′ ∈ Gf′ , |hf(i

′) − hf(j
′)| 6 1. This implies

∑k−1
i=1 |hf(p

′
i) −

2

hf(p
′
i+1)| 6 k. On the other hand

∑k−1
i=1 |hf(p

′
i) − hf(p

′
i+1)| > |hf(p

′
1) − hf(p

′
k)| = hf(v). Therefore,

k > hf(v), which means the shortest path from s to v in Gf′ is at least as long as the shortest path
from s to v in Gf.

2. Assume that uv is the bottleneck link on the shortest augmenting path of f and f ′′; then after aug-
menting f, the edge uv is replaced by the edge vu. Thus, there must be another step where we vu is
replaced by uv. We denote the flow being augmented at this step f ′. Now, note that when augmenting
a flow f∗, for any edge ij on the shortest augmenting path, we have hf∗(j) = hf∗(i) + 1. Thus, we have

hf(v) = hf(u) + 1 (7)
hf′(u) = hf′(v) + 1 (8)

These equations, together with the facts that hf′′(i) > hf′(i) > hf(i) for all i, imply that hf′′(u) >
hf(u) + 2.

3. Each time an edge uv is the bottleneck link of an augmentation, df(s, u) increase by 2. In addition,
df(s, u) never decreases. Furthermore, df(s, u) 6 |V | for all u and f. Thus, each edge can be the
bottleneck link O (|V |) time. There are |E| edges, and each augmentation has at least one bottleneck
links. Therefore, the number of augmentation is O (|V | · |E|).

3

