CSE 521: Design \& Analysis of Algorithms I

Dynamic Programming

Paul Beame

Dynamic Programming

- Dynamic Programming
- Give a solution of a problem using smaller sub-problems where the parameters of all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution

A simple case:
 Computing Fibonacci Numbers

- Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$
- Recursive algorithm:
- Fibo(n)
if $\mathbf{n}=\mathbf{0}$ then return $(\mathbf{0})$
else if $\mathbf{n}=\mathbf{1}$ then return($\mathbf{1}$)
else return(Fibo($\mathbf{n} \mathbf{- 1} \mathbf{1})+$ Fibo($\mathbf{n} \mathbf{- 2}$))

Call tree - start

Full call tree

Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
- Convert memoized algorithm from a recursive one to an iterative one

Fibonacci Dynamic Programming Version

- FiboDP(n): $\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[1] \leftarrow 1$
for $\mathbf{i}=\mathbf{2}$ to \mathbf{n} do $\mathrm{F}[\mathrm{i}] \leftarrow \mathrm{F}[\mathrm{i}-1]+\mathrm{F}[\mathrm{i}-2]$
endfor return(F[n])

Fibonacci: Space-Saving Dynamic Programming

- FiboDP(n): $\mathrm{prev} \leftarrow 0$ curr $\leftarrow 1$
for $\mathbf{i}=\mathbf{2}$ to \mathbf{n} do temp \leftarrow curr curr \leftarrow curr + prev prev \leftarrow temp endfor return(curr)

Dynamic Programming

- Useful when
- same recursive sub-problems occur repeatedly
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- principle of optimality
"Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"
- Can anticipate the parameters of these recursive calls

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
- e.g., bounded by a low-degree polynomial
- Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight \mathbf{w}_{i}
- $\mathbf{w}_{\mathbf{i}}$ might be
- amount of money we get from renting out the resource for that time period
- amount of time the resource is being used $\mathbf{w}_{\mathrm{i}}=\mathbf{f}_{\mathrm{i}}-\mathbf{s}_{\mathrm{i}}$
- Goal: Find compatible subset S of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
- Earliest start time $\mathbf{s}_{\mathbf{i}}$
- Doesn't work
- Shortest request time $\mathrm{f}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$
- Doesn't work
- Fewest conflicts
- Doesn't work

- Earliest finish fime f_{i}
- Doesn't work
- Largest weight $\mathbf{w}_{\mathbf{i}}$
- Doesn't work

Towards Dynamic Programming: Step 1 - A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_{i} so $\mathrm{f}_{1} \leq \mathrm{f}_{2} \leq \ldots \leq \mathrm{f}_{\mathrm{n}}$
- Say request \mathbf{i} comes before request \mathbf{j} if $\mathbf{i}<\mathbf{j}$
- For any request j let p(j) be
- the largest-numbered request before j that is compatible with j
- or 0 if no such request exists
- Therefore $\{\mathbf{1}, \ldots, \mathrm{p}(\mathrm{j})\}$ is precisely the set of requests before j that are compatible with j

Towards Dynamic Programming: Step 1 - A Recursive Algorithm

- Two cases depending on whether an optimal solution \mathbf{O} includes request \mathbf{n}
- If it does include request \mathbf{n} then all other requests in O must be contained in $\{1, \ldots, p(n)\}$
- Not only that!
- Any set of requests in $\{1, \ldots, p(n)\}$ will be compatible with request n
- So in this case the optimal solution O must contain an optimal solution for $\{1, \ldots, p(n)\}$
- "Principle of Optimality"

Towards Dynamic Programming: Step 1 - A Recursive Algorithm

- Two cases depending on whether an optimal solution \mathbf{O} includes request \mathbf{n}
- If it does not include request \mathbf{n} then all requests in O must be contained in
$\{1, \ldots, n-1\}$
- Not only that!
- The optimal solution O must contain an optimal solution for $\{\mathbf{1}, \ldots, \mathbf{n - 1}\}$
- "Principle of Optimality"

Towards Dynamic Programming: Step 1 - A Recursive Algorithm

- All subproblems involve requests $\{1, . ., \mathrm{i}\}$ for some i
- For $\mathbf{i}=\mathbf{1}, \ldots, \mathbf{n}$ let OPT(i) be the weight of the optimal solution to the problem $\{1, \ldots, \mathrm{i}\}$
- The two cases give OPT(n)=max[wn+OPT(p(n)),OPT(n-1)]
- Also
- $n \in O$ iff $w_{n}+O P T(p(n))>O P T(n-1)$

Towards Dynamic Programming: Step 1 - A Recursive Algorithm

- Sort requests and compute array $p[i]$ for each $\mathbf{i = 1 , \ldots , n}$

ComputeOpt(n)
if $\mathbf{n}=0$ then return($\mathbf{0}$)
else
$\mathbf{u} \leftarrow$ ComputeOpt $(\mathbf{p}[\mathbf{n}])$
$\mathbf{v} \leftarrow$ ComputeOpt(n-1)
if $\mathbf{w}_{\mathbf{n}}+\mathbf{u}>\mathbf{v}$ then return $\left(\mathbf{w}_{\mathbf{n}}+\mathbf{u}\right)$ else return(\mathbf{v})
endif

Towards Dynamic Programming: Step 2 - Small \# of parameters

- ComputeOpt(n) can take exponential time in the worst case
- 2^{n} calls if $p(i)=i-1$ for every I
- There are only \mathbf{n} possible parameters to ComputeOpt
- Store these answers in an array OPT[n] and only recompute when necessary
- Memoization
- Initialize OPT[i]=0 for $\mathbf{i}=\mathbf{1}, \ldots, n$

Dynamic Programming: Step 2 - Memoization

ComputeOpt(n)
if $\mathbf{n}=0$ then return $(\mathbf{0})$
else
$\mathbf{u} \leftarrow$ MComputeOpt($\mathbf{p}[\mathbf{n}]$)
$\mathbf{v} \leftarrow$ MComputeOpt($\mathbf{n} \mathbf{- 1}$)
if $\mathbf{w}_{\mathbf{n}}+\mathbf{u}>\mathbf{v}$ then
return $\left(\mathbf{w}_{\mathbf{n}}+\mathbf{u}\right)$
else return(\mathbf{v})
endif

MComputeOpt(n) if OPT[n]=0 then $\mathbf{v} \leftarrow$ ComputeOpt(n) OPT $[\mathbf{n}] \leftarrow \mathrm{v}$ return(v) else return(OPT[n]) endif

Dynamic Programming Step 3: Iterative Solution

- The recursive calls for parameter \mathbf{n} have parameter values it that are < n

IterativeComputeOpt(n)
array OPT[0..n]
OPT $[0] \leftarrow 0$
for $\mathrm{i}=1$ to n
if $\mathbf{w}_{\mathbf{i}}+$ OPT $[p[i]]>O P T[i-1]$ then
OPT $[\mathrm{i}] \leftarrow \mathbf{w}_{\mathrm{i}}+\mathbf{O P T}[p[\mathrm{i}]]$
else

$$
\mathrm{OPT}[\mathrm{i}] \leftarrow \mathrm{OPT}[\mathrm{i}-1]
$$

endif
endfor

Producing the Solution

IterativeComputeOptSolution(n) array OPT[0..n], Used[1..n]
OPT $[0] \leftarrow 0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n}
if $w_{i}+$ OPT $[p[i]]>O P T[i-1]$ then OPT $[\mathrm{i}] \leftarrow \mathrm{w}_{\mathrm{i}}+\mathrm{OPT}[\mathrm{p}[\mathrm{i}]]$
Used $[i] \leftarrow 1$
else
OPT $[\mathrm{i}] \leftarrow$ OPT $[\mathrm{i}-1]$
Used $[\mathrm{i}] \leftarrow 0$
endif
endfor

FindSolution
$\mathrm{i} \leftarrow \mathbf{n}$
$\mathbf{S} \leftarrow \varnothing$
while i> $\mathbf{0}$ do
if Used[i]=1 then $\mathbf{S} \leftarrow \mathbf{S} \cup\{i\}$ $\mathbf{i} \leftarrow \mathbf{p}[i]$
else $\mathrm{i} \leftarrow \mathrm{i}-1$
endif
endwhile

Example

sit	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
$\mathrm{p}[\mathrm{i}]$									
OPT[i]									
Used[i]									

Example

s_{i}	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
f_{i}	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
$\mathrm{p}[\mathrm{i}]$	0	0	0	1	3	5	3	3	7
OPT[i]									
Used[i]									

Example

	1	2	3	4	5	6	7	8	9
	4	2	6	8	11	15	11	12	18
	7	9	10	13	14	17	18	19	20
w_{i}	3	7	4	5	3	2	7	7	2
p[i]	0	0	0	1	3	5	3	3	7
OPT[i]	3	7	7	8	10	12	14	14	16
Used[i]	1	1	0	1	1	1	1	0	1

$$
S=\{9,7,2\}
$$

Segmented Least Squares

- Least Squares
- Given a set \mathbf{P} of \mathbf{n} points in the plane $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ with $x_{1}<\ldots<x_{n}$ determine a line L given by $y=a x+b$ that optimizes the totaled 'squared error'
- $\operatorname{Error}(\mathbf{L}, \mathbf{P})=\Sigma_{i}\left(\mathbf{y}_{\mathbf{i}}-\mathbf{a} \mathbf{x}_{\mathbf{i}}-\mathbf{b}\right)^{2}$
- A classic problem in statistics
- Optimal solution is known (see text)
- Call this line(\mathbf{P}) and its error error(\mathbf{P})

Least Squares

Segmented Least Squares

- What if data seems to follow a piece-wise linear model?

Segmented Least Squares

Segmented Least Squares

Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose $\mathbf{n} \mathbf{- 1}$ pieces we could fit with $\mathbf{0}$ error
- Not fair
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

Segmented Least Squares

- Recursive idea
- If we knew the point p_{j} where the last line segment began then we could solve the problem optimally for points $\mathbf{p}_{1}, \ldots, p_{j}$ and combine that with the last segment to get a global optimal solution
- Let OPT(i) be the optimal penalty for points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{i}\right\}$
- Total penalty for this solution would be

$$
\operatorname{Error}\left(\left\{\mathbf{p}_{\mathbf{j}}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}\right)+\mathbf{C}+\operatorname{OPT}(\mathbf{j}-\mathbf{1})
$$

Segmented Least Squares

Segmented Least Squares

- Recursive idea
- We don't know which point is p_{j}
- But we do know that $1 \leq j \leq n$
- The optimal choice will simply be the best among these possibilities
- Therefore

$$
\begin{gathered}
\operatorname{OPT}(\mathbf{n})=\min _{1 \leq j \leq n}\left\{\operatorname{Error}\left(\left\{\mathbf{p}_{\mathbf{j}}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}\right)+\mathbf{C}+\right. \\
\operatorname{OPT}(\mathbf{j}-\mathbf{1})\}
\end{gathered}
$$

Dynamic Programming Solution

SegmentedLeastSquares(n)
array OPT[0..n], Begin[1..n]
OPT $[0] \leftarrow 0$
for $\mathbf{i}=1$ to \mathbf{n}
OPT $[\mathrm{i}] \leftarrow \operatorname{Error}\left\{\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{i}}\right)\right\}+\mathrm{C}$
Begin $[i] \leftarrow 1$
for $\mathrm{j}=2$ to $\mathrm{i}-1$
$\mathrm{e} \leftarrow \operatorname{Error}\left\{\left(\mathrm{p}_{\mathrm{j}}, \ldots, \mathrm{p}_{\mathrm{i}}\right)\right\}+\mathrm{C}+\mathrm{OPT}[\mathrm{j}-1]$ if $\mathbf{e}<\mathbf{O P T}[\mathbf{i}]$ then OPT[i] $\leftarrow \mathbf{e}$ Begin $[\mathrm{i}] \leftarrow \mathrm{j}$
endif
endfor
endfor
return(OPT[n])

FindSegments
$\mathbf{i} \leftarrow \mathbf{n}$
$\mathbf{S} \leftarrow \varnothing$
while i> 1 do compute Line $\left(\left\{p_{\text {Begin }[i]}, \ldots, p_{i}\right\}\right)$
output ($\mathbf{p}_{\text {Begin }[i]}, \mathbf{p}_{\mathbf{i}}$), Line
$i \leftarrow \operatorname{Begin}[i]$
endwhile

Knapsack (Subset-Sum) Problem

- Given:
- integer W (knapsack size)
- \mathbf{n} object sizes $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}$
- Find:
- Subset \mathbf{S} of $\{\mathbf{1}, \ldots, \mathbf{n}\}$ such that $\sum_{i \in \mathrm{~S}} \mathrm{x}_{\mathrm{i}} \leq \mathrm{W}$ but $\sum_{\mathrm{kS}} \mathrm{x}_{\mathrm{i}}$ is as large as possible

Recursive Algorithm

- Let $\mathbf{K}(\mathbf{n}, \mathbf{W})$ denote the problem to solve for \mathbf{W} and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}$
- For $\mathrm{n}>0$,
- The optimal solution for $\mathbf{K}(\mathbf{n}, \mathbf{W})$ is the better of the optimal solution for either

$$
K(n-1, W) \text { or } x_{n}+K\left(n-1, W-x_{n}\right)
$$

- For $\mathrm{n}=\mathbf{0}$
- K ($0, \mathrm{~W}$) has a trivial solution of an empty set \mathbf{S} with weight 0

Recursive calls

- Recursive calls on list ...,3, 4, 7

Common Sub-problems

- Only sub-problems are K(i,w) for
- $\mathbf{i}=0,1, \ldots, n$
- $w=0,1, \ldots, W$
- Dynamic programming solution
- Table entry for each K(i,w)
- OPT - value of optimal soln for first i objects and weight w
- belong flag - is \mathbf{x}_{i} a part of this solution?
- Initialize OPT[0,w] for w=0,...,W
- Compute all OPT[i,*] from OPT[i-1,*] for i>0

Dynamic Knapsack Algorithm

for $\mathbf{w}=\mathbf{0}$ to \mathbf{W}; $\mathbf{O P T}[\mathbf{0}, \mathbf{w}] \leftarrow \mathbf{0}$; end for
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
for $\mathbf{w}=\mathbf{0}$ to \mathbf{W} do OPT $[i, w] \leftarrow$ OPT $[i-1, w]$ belong $[i, w] \leftarrow 0$

Time O(nW)
if $\mathbf{w} \geq \mathbf{x}_{\mathrm{i}}$ then
$\mathrm{val} \leftarrow \mathrm{x}_{\mathrm{i}}+$ OPT $\left[\mathrm{i}, \mathrm{w}-\mathrm{x}_{\mathrm{i}}\right]$
if val>OPT[i,w] then
OPT $[i, w] \leftarrow$ val belong $[i, w] \leftarrow 1$
end for
end for
return(OPT[n,W])

Saving Space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S ?
- Follow the belong flags $\mathbf{O}(\mathrm{n})$ time
- What about space?

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small"
- e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA Secondary Structure: Dynamic Programming on Intervals

- RNA: sequence of bases
- String over alphabet $\{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{U}\}$ U-G-U-A-C-C-G-G-U-A-G-U-A-C-A
- RNA folds and sticks to itself like a zipper
- A bonds to U
- C bonds to G
- Bends can't be sharp
- No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure

RNA Secondary Structure

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

Another view of RNA Secondary Structure

RNA Secondary Structure

- Input: String $\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{n}} \in\{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{U}\}^{*}$
- Output: Maximum size set S of pairs (i,j) such that
- $\left\{\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right]=\{\mathbf{A}, \mathbf{U}\}$ or $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right\}=\{\mathbf{C}, \mathbf{G}\}$
- The pairs in S form a matching
- i<j-4 (no sharp bends)
- No crossing pairs
- If (\mathbf{i}, j) and ($\mathbf{k}, \mathrm{I})$ are in S then it is not the case that they cross as in $\mathrm{i}<\mathbf{k}<\mathrm{j}<1$

Recursion Solution

- Try all possible matches for the last base

OPT(1..k-1) OPT(k+1..j-1)
OPT(1..j) $=$ MAX $\left(\right.$ OPT $(1 . . \mathrm{j}-1), 1+$ MAX $_{\mathrm{k}=1 . . \mathrm{j}-5}(\mathrm{OPT}(1 . . \mathrm{k}-1)+\mathrm{OPT}(\mathrm{k}+1 . . \mathrm{j}-1))$
General form:

$$
\mathrm{x}_{\mathrm{k}} \text { matches } \mathrm{x}_{\mathrm{j}} \quad \text { Doesn't start at } 1
$$

OPT(i..j)=MAX(OPT(i..j-1),

$$
\begin{aligned}
& \left.1+\text { MAX }_{k=i . . j-5}(O P T(i . . k-1)+O P T(k+1 . . j-1))\right) \\
& \text { x }_{k} \text { matches } x_{j}
\end{aligned}
$$

RNA Secondary Structure

- 2D Array OPT(i,j) for íj represents optimal \# of matches entirely for segment i..j
- For $\mathrm{j}-\mathrm{i} \leq 4$ set OPT(i,j)=0 (no sharp bends)
- Then compute OPT(i,j) values when $\mathrm{j}-\mathrm{i}=5,6, \ldots, \mathrm{n}-1$ in turn using recurrence.
- Return OPT(1,n)
- Total of $\mathbf{O}\left(\mathrm{n}^{3}\right)$ time
- Can also record matches along the way to produce S
- Algorithm is similar to the polynomial-time algorithm for Context-Free Languages based on Chomsky Normal Form
- Both use dynamic programming over intervals

Sequence Alignment: Edit Distance

- Given:
- Two strings of characters $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{m}$
- Find:
- The minimum number of edit steps needed to transform A into B where an edit can be:
- insert a single character
- delete a single character
- substitute one character by another

Sequence Alignment vs Edit Distance

- Sequence Alignment
- Insert corresponds to aligning with a "-" in the first string
- Cost δ (in our case 1)
- Delete corresponds to aligning with a "-" in the second string
- Cost δ (in our case 1)
- Replacement of an aby abcorresponds to a mismatch
- Cost $\alpha_{\text {ab }}$ (in our case $\mathbf{1}$ if $\mathbf{a} \neq \mathbf{b}$ and $\mathbf{0}$ if $\mathbf{a = b}$)
- In Computational Biology this alignment algorithm is attributed to Smith \& Waterman

Applications

- "diff" utility - where do two files differ
- Version control \& patch distribution save/send only changes
- Molecular biology
- Similar sequences often have similar origin and function
- Similarity often recognizable despite millions or billions of years of evolutionary divergence

Growth of GenBank

Recursive Solution

- Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B
- Let $\mathrm{D}(\mathrm{i}, \mathrm{j})$ be the number of edits required to transform $a_{1} a_{2} \ldots a_{i}$ into $b_{1} b_{2} \ldots b_{j}$
- Clearly $\mathrm{D}(0,0)=0$

Computing D(n,m)

- Imagine how best sequence handles the last characters a_{n} and b_{m}
- If best sequence of operations
- deletes a_{n} then $D(n, m)=D(n-1, m)+1$
- inserts b_{m} then $D(n, m)=D(n, m-1)+1$
- replaces a_{n} by b_{m} then

$$
D(n, m)=D(n-1, m-1)+1
$$

- matches \mathbf{a}_{n} and \mathbf{b}_{m} then

$$
D(n, m)=D(n-1, m-1)
$$

Recursive algorithm $\mathrm{D}(\mathrm{n}, \mathrm{m})$

if $\mathbf{n}=\mathbf{0}$ then return (\mathbf{m})
elseif $\mathbf{m}=\mathbf{0}$ then
return(\mathbf{n})
else
if $\mathbf{a}_{\mathrm{n}}=\mathbf{b}_{\mathrm{m}}$ then
else
replace-cost $\leftarrow 1$
endif
return $(\boldsymbol{m i n}\{\mathbf{D}(\mathbf{n}-\mathbf{1}, \mathbf{m})+\mathbf{1}$,
$D(n, m-1)+1$,
$D(n-1, m-1)+$ replace-cost $\}$)

Dynamic Programming

endfor
endfor

Example run with AGACATTG and GAGTTA

	0	A 1	${ }_{2}^{\text {G }}$	${ }_{3}^{\text {A }}$	C 4	A	$\begin{aligned} & \text { T } \\ & 6 \end{aligned}$	${ }_{7}^{7}$	${ }_{8}^{\text {G }}$
0									
G 1									
A 2									
G 3									
T 4									
T 5									
A 6									

Example run with AGACATTG and GAGTTA

Example run with AGACATTG and GAGTTA

Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

$$
\begin{aligned}
& \text { AGACATTG } \\
& -\quad \text { GAG_TTA }
\end{aligned}
$$

Saving Space

- To compute the distance values we only need the last two rows (or columns)
- O(min(m,n)) space
- To compute the alignment/sequence of operations
- seem to need to store all $\mathbf{O}(\mathrm{mn})$ pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in $\mathbf{O}(\min (\mathbf{m}, \mathrm{n}))$ space and obtain $\mathbf{O}(\mathbf{m + n})$ time
- In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
- Full alignments only required for sequences with good scores
- Researchers want all alignments that are close to optimal
- Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
- Ideas are neat, though

Saving space

- Alignment corresponds to a path through the table from lower right to upper left
- Must pass through the middle column
- Recursively compute the entries for the middle column from the left
- If we knew the cost of completing each then we could figure out where the path crossed
- Problem
- There are n possible strings to start from.
- Solution
- Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
- Can reuse the storage on the left when solving the right hand problem

Shortest paths with negative cost edges (Bellman-Ford)

- Dijsktra's algorithm failed with negative-cost edges
- What can we do in this case?
- Negative-cost cycles could result in shortest paths with length $-\infty$
- Suppose no negative-cost cycles in G
- Shortest path from s to thas at most n-1 edges
- If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can't have -ve cost

Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from s to t based on the \# of edges in the path
- Let Cost(s,t,i)=cost of minimum-length path from s to t using up to i hops.
- $\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{0})=\left\{\begin{array}{l}0 \text { if } \mathbf{v}=\mathbf{t} \\ \infty \text { otherwise }\end{array}\right.$
- $\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i})=\min \{\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i}-\mathbf{1})$,

$$
\left.\min _{(v, w) \in \mathrm{E}}\left(\mathbf{c}_{\mathrm{vw}}+\operatorname{Cost}(\mathbf{w}, \mathbf{t}, \mathrm{i}-1)\right)\right\}
$$

Bellman-Ford

- Observe that the recursion for Cost(s,t,i) doesn't change t
- Only store an entry for each vand i
- Termed OPT(v,i) in the text
- Also observe that to compute OPT(*, i) we only need OPT(*, $\mathrm{i}-1$)
- Can store a current and previous copy in O(n) space.

Bellman-Ford

ShortestPath(G,s,t)
for all $\mathbf{v} \in \mathbf{V}$
OPT[v] $\leftarrow \infty$
OPT $[t] \leftarrow 0$
for $\mathbf{i}=\mathbf{1}$ to $\mathbf{n - 1}$ do
for all $\mathbf{v} \in \mathbf{V}$ do
O(mn) time
OPT $^{\prime}[\mathbf{v}] \leftarrow \min _{(\mathbf{v}, \mathbf{w}) \in \mathrm{E}}\left(\mathbf{c}_{\mathbf{v w}}+\right.$ OPT $\left.[\mathbf{w}]\right)$
for all $\mathbf{v} \in \mathbf{V}$ do
OPT $[\mathbf{v}] \leftarrow \min \left(\right.$ OPT $\left.^{’}[\mathbf{v}], \mathrm{OPT}[\mathbf{v}]\right)$
return OPT[s]

Negative cycles

- Claim: There is a negative-cost cycle that can reach t iff for some vertex $\mathbf{v} \in \mathbf{V}, \operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n})<\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{n}-\mathbf{1})$
- Proof:
- We already know that if there aren't any then we only need paths of length up to $\mathbf{n - 1}$
- For the other direction
- The recurrence computes $\operatorname{Cost}(\mathbf{v}, \mathbf{t}, \mathbf{i})$ correctly for any number of hops i
- The recurrence reaches a fixed point if for every $\mathbf{v} \in \mathbf{V}$, $\operatorname{Cost}(\mathrm{v}, \mathrm{t}, \mathrm{i})=\operatorname{Cost}(\mathrm{v}, \mathrm{t}, \mathrm{i}-1)$
- A negative-cost cycle means that eventually some Cost(v,t,i) gets smaller than any given bound
- Can't have a -ve cost cycle if for every $\mathbf{v} \in \mathbf{V}$, $\operatorname{Cost}(v, t, n)=\operatorname{Cost}(v, t, n-1)$

Last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
- Even better, one can update only neighbors v of vertices w with OPT'[w]=OPT[w]
- Can store a successor pointer when we compute OPT
- Homework assignment
- By running for step n we can find some vertex v on a negative cycle and use the successor pointers to find the cycle

Bellman-Ford

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $\mathrm{O}(\mathbf{n}+\mathbf{m})$ time

