
1

CSE 521: Design &

Analysis of Algorithms I

Some Useful Hashing Data Structures

Paul Beame

2

Some Random Data Structure Ideas

� Bloom Filters
� Quick certification of non-membership in a set

� The power of two random choices
� Better load balancing

� Cuckoo hashing
� Using two choices and data movement for a

simple efficient dynamic dictionary data structure

3

Bloom Filters

� Given a set S = {x1,x2,x3,…,xn} on a
universe U, want to answer queries of
the form:

Is y∈∈∈∈S ?

� Bloom filter provides an answer in
� “Constant” time (to hash).
� Small amount of space.
� But with small probability of a false positive

� Useful when the answer is usually NO

4

Exact Computation based on
Universal Hash Function Families

� Family of functions HHHH
� Each H∈∈∈∈HHHH satisfies H : U → {0,...,m-1}
� Assume that H is chosen from HHHH at random

independent of the elements of S
� Universal Hash Function Family

� For any x≠y∈ U, PrH∈∈∈∈HHHH[H(x)=H(y)]=1/m

� Example Universal Family: HHHH
� U={0,...,2N-1}, m=2M

� each function specified by pair (a,b) where a is an
(M+N)-bit integer and b∈{0,...,m-1}

� H(a,b)(x)=middle M bits of ax+b (which is M+2N
bits long)

5

Exact Computation based on
Universal Hash Function Families

� Hash the elements of U
� Collisions:

� Open hashing
� Place them nearby in the table

� Separate chaining
� Extra pointers to follow

� Double hashing
� Additional hash table for set of elements that

within each table entry
� Can be made into a perfect hash function with

low failure probability but is complex

6

Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi (xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have false positive; all k values are 1, but y is not in S.

n items m = cn bits k hash functions

7

Truly Random Hash Functions

� Instead of using hash function families indexed by a
small set like the set of (a,b) pairs let HHHH be the set of
all possible functions from U to {0,...,m-1}

� Then for any set of s distinct elements x1,...,xs of U:
PrH∈∈∈∈HHHH [H(x1)=a1,...,H(xs)=as] =1/ms

� Universal families don’t achieve this for large s
� In reality analysis is approximate since we don’t usue truly

random functions
� Effectiveness in practice relies on data not being adversarial

8

False Positive Probability

� Pr(specific bit of filter is 0) is
p’ ≡ (1-1/m)kn ≈ e-kn /m ≡ p (p’≤p)

� If β is fraction of 0 bits in the filter then false
positive probability for a new element is

(1- β)k ≈ (1- p’)k ≈ (1- p’)k= (1-e-kn /m)k

� Approximations are almost exact since β is
concentrated around E[β].

� Find optimal at k = (ln 2) m/n by calculus.
� So optimal false positive prob is about (0.6185)m/n

n items m = cn bits k hash functions

9

Graph of (1-e-k/c)k for c=8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

F
al

se
 p

os
it

iv
e

ra
te m/n = 8

Opt k = 8 ln 2 = 5.45...

n items m = cn bits k hash functions

10

Application Example

� Google BigTable uses Bloom filters to
reduce the disk lookups for non-existent
rows or columns.
� Avoiding costly disk lookups considerably

increases the performance of a database
query operation

11

Handling Deletions

� Bloom filters can handle insertions, but
not deletions.

� If deleting x i means resetting 1’s to 0’s,
then deleting x i will “delete” x j.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

xi xj

12

Counting Bloom Filters

Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0B

To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0B

Can obtain a corresponding Bloom filter by reducing to 0/1.

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0B

13

Counting Bloom Filters: Overflow

� Must choose counters large enough to
avoid overflow
� e.g. for c=8 choose 4 bits per counter
� Average load using k = (ln 2) m/n counters is

ln 2.
� Probability a counter has load at least 16 is

e-ln 2 (ln 2)16/16! which is roughly 6.78x10-17

14

Bloom filter variety

� There are alternative ways to design Bloom
filter style data structures that are more
effective for some variations, applications

15

Random Load Balancing

� Assigning tasks to servers
� Distributed/parallel environment

� No central control
� Tasks generated by processes anywhere

� Indistinguishable
� Goal: Assign tasks to servers in constant time

keeping load balanced
� Simple approach

� assign each task to a random server
� Case for analysis

� n servers
� n tasks (average load 1)

16

Random Load Balancing:
Tossing Balls into Bins

� tasks ≡ balls, servers ≡ bins
� Pr [ball i in bin j] =1/n
� Pr [≥ k balls in bin j] ≤ (n choose k) n-k

≤ (nk/k!) n-k

=1/k!≈1/kΘΘΘΘ(k)

� Pr[∃∃∃∃ bin with ≥ k balls] ≤ n/k ΘΘΘΘ(k)

� In order for this to be small we need
k=Ω(log n/loglog n)

� Imbalance:
� Some bin will have Ω(log n/loglog n) balls

17

Random Load Balancing:
The Power of Two Choices

� Extra assumption:
� Process can detect current load of server

prior to assignment

� Power of two choices algorithm:
[Azar-Broder-Karlin-Upfal]
� For each task/ball choose 2 servers/bins

uniformly at random
� Assign task/ball to less loaded server/bin
� More generally: make d random choices

and assign to least loaded bin

18

Random Load Balancing:
The Power of Two Choices

� Theorem [ABKU] With 2 random
choices and assignment to the least
loaded bin the no bin contains more
than log log n+O(1) balls almost
certainly
� With d choices the load goes down to

loglog n/log d+O(1)

� Proof idea:
� For i=0,1,… let βi be the fraction of bins

with load at least i.

19

Power of 2 choices rough analysis

� Imagine assigning the balls sequentially
� Let βi(t)≤βi denote the fraction of bins with load at

least i after t balls
� β0(t)=1
� Clearly β2 is ≤ ½ since there only n balls
� For t+1st ball to create a bin with load ≥ i+1≥3, all

of its d bin choices must have load ≥ i.
� Probability is at most [βi (t)]d ≤ βi

d

� Associate each bin of load ≥ i+1 with the ball
inserted that created that load

� Expected total # of bins contributing to βi+1
is ≤ n βi

d

� Roughly implies that βi+1 ≤ βi
d

20

Power of 2 choices rough analysis

� Since β2 ≤ ½ and βi+1 ≤ βi
d we have βk ≤ (½)dk-2

� Now the expected # of bins of load ≥ k is n βk ≤ n

(½)dk-2

� This is less than 1 when n (½)dk-2
≤1 i.e. when

log n ≤ dk-2, that is when loglog n ≤(k-2) log d

equivalently when k≥ loglog n/log d + 2

� This is just expected size but can show that with a

small change in constant this holds with high

probability, though proof is tricky

21

Extension: d-left Hashing

� Split hash table into d equal subtables.
� To insert, choose a bucket uniformly for each

subtable.
� Place item in a cell in the least loaded bucket,

breaking ties to the left.

22

Property of d-left Hashing

� [Vocking] Having d-separate tables of
size n/d and tiebreaking to the left as in
random d-left hashing is at least as
good as independent choices.
� Almost surely the most loaded bin has load

at most loglog n/(dΦd)+O(1) where Φd ≤ 2

23

Cuckoo Hashing

� Simple dynamic perfect hashing using power of 2
choices
� Use 2 random hash functions h0 and h1 to 2 tables of size

(1+ε)n
� To insert x

� If bin h0(x) is full then check h1(x).
� if both full then bin h0(x) contains some y with

h0(y)=h0(x) so set b=1 and repeat:
� kick y out of its nest (as cuckoos do) and insert it in

its unique alternative place hb(y), kicking out
whatever z is already there

� y ← z; b ←1 – b

� It is possible that a cycle is created. To handle this add a
max # of iterations through the loop and then rebuild the
table using new random hash functions

