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CSE 521:  Design & 
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Some Useful Hashing Data Structures

Paul Beame
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Some Random Data Structure Ideas

� Bloom Filters
� Quick certification of non-membership in a set

� The power of two random choices
� Better load balancing

� Cuckoo hashing
� Using two choices and data movement for a 

simple efficient dynamic dictionary data structure
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Bloom Filters

� Given a set S = {x1,x2,x3,…,xn} on a 
universe U, want to answer queries of 
the form:

Is y∈∈∈∈S ?

� Bloom filter provides an answer in
� “Constant” time (to hash).
� Small amount of space.
� But with small probability of a false positive

� Useful when the answer is usually NO
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Exact Computation based on
Universal Hash Function Families

� Family of functions HHHH
� Each H∈∈∈∈HHHH satisfies H : U → {0,...,m-1}
� Assume that H is chosen from HHHH at random 

independent of the elements of S
� Universal Hash Function Family

� For any x≠y∈ U, PrH∈∈∈∈HHHH[H(x)=H(y)]=1/m

� Example Universal Family: HHHH
� U={0,...,2N-1},  m=2M

� each function specified by pair (a,b) where a is an 
(M+N)-bit integer and b∈{0,...,m-1}

� H(a,b)(x)=middle M bits of ax+b (which is M+2N
bits long)
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Exact Computation based on
Universal Hash Function Families

� Hash the elements of U
� Collisions:

� Open hashing
� Place them nearby in the table

� Separate chaining
� Extra pointers to follow

� Double hashing
� Additional hash table for set of elements that 

within each table entry
� Can be made into a perfect hash function with 

low failure probability but is complex
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Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times.  If Hi (xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y).  All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have false positive;  all k values are 1, but y is not in S.

n items                          m = cn bits                     k hash functions
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Truly Random Hash Functions

� Instead of using hash function families indexed by a 
small set like the set of (a,b) pairs let HHHH be the set of 
all possible functions from U to {0,...,m-1}

� Then for any set of s distinct elements x1,...,xs of U:
PrH∈∈∈∈HHHH [ H(x1)=a1,...,H(xs)=as] =1/ms

� Universal families don’t achieve this for large s
� In reality analysis is approximate since we don’t usue truly 

random functions
� Effectiveness in practice relies on data not being adversarial



8

False Positive Probability

� Pr(specific bit of filter is 0) is
p’ ≡ (1-1/m)kn ≈ e-kn /m ≡ p     (p’≤p)

� If β is fraction of 0 bits in the filter then false 
positive probability for a new element is 

(1- β)k ≈ (1- p’ )k ≈ (1- p’ )k= (1-e-kn /m)k

� Approximations are almost exact since β is 
concentrated around E[β]. 

� Find optimal at k = (ln 2) m/n by calculus.
� So optimal false positive prob is about (0.6185)m/n

n items         m = cn bits         k hash functions
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Graph of (1-e-k/c)k  for c=8
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Application Example

� Google BigTable uses Bloom filters to 
reduce the disk lookups for non-existent 
rows or columns. 
� Avoiding costly disk lookups considerably 

increases the performance of a database 
query operation
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Handling Deletions

� Bloom filters can handle insertions, but 
not deletions.

� If deleting x i means resetting 1’s to 0’s, 
then deleting x i will “delete” x j.  

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

xi xj
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Counting Bloom Filters

Start with an m bit array, filled with 0s.

Hash each item xj in S k times.  If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0B

To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0B

Can obtain a corresponding Bloom filter by reducing to 0/1.

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0B
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Counting Bloom Filters: Overflow

� Must choose counters large enough to 
avoid overflow
� e.g. for c=8 choose 4 bits per counter
� Average load using k = (ln 2) m/n counters is 

ln 2. 
� Probability a counter has load at least 16 is       

e-ln 2 (ln 2)16/16! which is roughly 6.78x10-17
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Bloom filter variety

� There are alternative ways to design Bloom 
filter style data structures that are more 
effective for some variations, applications
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Random Load Balancing

� Assigning tasks to servers
� Distributed/parallel environment

� No central control
� Tasks generated by processes anywhere

� Indistinguishable
� Goal: Assign tasks to servers in constant time 

keeping load balanced 
� Simple approach

� assign each task to a random server
� Case for analysis 

� n servers
� n tasks (average load 1)
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Random Load Balancing:
Tossing Balls into Bins

� tasks ≡ balls, servers ≡ bins
� Pr [ball i in bin j ] =1/n
� Pr [≥ k balls in bin j ] ≤ (n choose k) n-k

≤ (nk/k! ) n-k

=1/k!≈1/kΘΘΘΘ(k)

� Pr[ ∃∃∃∃ bin with ≥ k balls] ≤ n/k ΘΘΘΘ(k) 

� In order for this to be small we need                
k=Ω(log n/loglog n)

� Imbalance:
� Some bin will have Ω(log n/loglog n) balls
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Random Load Balancing:
The Power of Two Choices

� Extra assumption: 
� Process can detect current load of server 

prior to assignment

� Power of two choices algorithm:
[Azar-Broder-Karlin-Upfal]
� For each task/ball choose 2 servers/bins 

uniformly at random
� Assign task/ball to less loaded server/bin
� More generally: make d random choices 

and assign to least loaded bin
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Random Load Balancing:
The Power of Two Choices

� Theorem [ABKU] With 2 random 
choices and assignment to the least 
loaded bin the no bin contains more 
than log log n+O(1) balls almost 
certainly
� With d choices the load goes down to 

loglog n/log d+O(1) 

� Proof idea:
� For i=0,1,… let βi be the fraction of bins 

with load at least i.
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Power of 2 choices rough analysis

� Imagine assigning the balls sequentially
� Let βi(t)≤βi denote the fraction of bins with load at 

least i after t balls
� β0(t)=1
� Clearly β2 is ≤ ½ since there only n balls
� For t+1st ball to create a bin with load ≥ i+1≥3, all 

of its d bin choices must have load ≥ i.
� Probability is at most [βi (t)]d ≤ βi 

d

� Associate each bin of load ≥ i+1 with the ball 
inserted that created that load

� Expected total # of bins contributing to βi+1
is ≤ n βi 

d

� Roughly implies that βi+1 ≤ βi 
d
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Power of 2 choices rough analysis

� Since β2 ≤ ½ and βi+1 ≤ βi 
d we have      βk ≤ (½)dk-2

� Now the expected # of bins of load ≥ k is n βk ≤ n 

(½)dk-2

� This is less than 1 when n (½)dk-2
≤1 i.e. when          

log n ≤ dk-2, that is when loglog n ≤(k-2) log d 

equivalently when k≥ loglog n/log d + 2

� This is just expected size but can show that with a 

small change in constant this holds with high 

probability, though proof is tricky
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Extension: d-left Hashing

� Split hash table into d equal subtables.
� To insert, choose a bucket uniformly for each 

subtable.
� Place item in a cell in the least loaded bucket, 

breaking ties to the left. 
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Property of d-left Hashing 

� [Vocking]  Having d-separate tables of 
size n/d and tiebreaking to the left as in 
random d-left hashing is at least as 
good as independent choices. 
� Almost surely the most loaded bin has load 

at most loglog n/(dΦd)+O(1) where Φd ≤ 2
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Cuckoo Hashing

� Simple dynamic perfect hashing using power of 2
choices
� Use 2 random hash functions h0 and h1 to 2 tables of size 

(1+ε)n
� To insert x

� If bin h0(x) is full then check h1(x).
� if both full then bin h0(x) contains some y with 

h0(y)=h0(x) so set b=1 and repeat:
� kick y out of its nest (as cuckoos do) and insert it in 

its unique alternative place hb(y), kicking out 
whatever z is already there

� y ← z;   b ←1 – b

� It is possible that a cycle is created.  To handle this add a 
max # of iterations through the loop and then rebuild the 
table using new random hash functions


