CSE 521: Design \& Analysis of Algorithms I

Some Useful Hashing Data Structures

Paul Beame

Some Random Data Structure Ideas

- Bloom Filters
- Quick certification of non-membership in a set
- The power of two random choices
- Better load balancing
- Cuckoo hashing
- Using two choices and data movement for a simple efficient dynamic dictionary data structure

Bloom Filters

- Given a set $\mathbf{S}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$ on a universe \mathbf{U}, want to answer queries of the form:

$$
I s y \in S ?
$$

- Bloom filter provides an answer in
- "Constant" time (to hash).
- Small amount of space.
- But with small probability of a false positive
- Useful when the answer is usually NO

Exact Computation based on Universal Hash Function Families

- Family of functions \mathscr{H}
- Each $\mathbf{H} \in \mathscr{H}$ satisfies $\mathbf{H}: \mathbf{U} \rightarrow\{0, \ldots, \mathrm{~m}-\mathbf{1}\}$
- Assume that H is chosen from \mathcal{H} at random independent of the elements of S
- Universal Hash Function Family
- For any $\mathbf{x} \neq \mathbf{y} \in \mathrm{U}, \operatorname{Pr}_{\mathrm{H} \in \mathcal{H}}[\mathrm{H}(\mathbf{x})=\mathrm{H}(\mathbf{y})]=1 / \mathrm{m}$
- Example Universal Family: \mathscr{H}
- $\mathrm{U}=\left\{0, \ldots, 2^{\mathrm{N}}-1\right\}, \mathrm{m}=\mathbf{2}^{\mathrm{M}}$
- each function specified by pair (\mathbf{a}, \mathbf{b}) where \mathbf{a} is an $(\mathbf{M}+\mathbf{N})$-bit integer and $\mathbf{b} \in\{\mathbf{0}, \ldots, \mathbf{m}-\mathbf{1}\}$
- $H_{(a, b)}(x)=$ middle M bits of $a x+b$ (which is $M+2 N$ bits long)

Exact Computation based on Universal Hash Function Families

- Hash the elements of U
- Collisions:
- Open hashing
- Place them nearby in the table
- Separate chaining
- Extra pointers to follow
- Double hashing
- Additional hash table for set of elements that within each table entry
- Can be made into a perfect hash function with low failure probability but is complex

Bloom Filters

Start with an m bit array, filled with Os.

Hash each item x_{j} in $\mathbf{S k}$ times. If $H_{i}\left(x_{j}\right)=a$, set $B[a]=1$.

To check if \boldsymbol{y} is in S , check B at $\boldsymbol{H}_{i}(\boldsymbol{y})$. All \boldsymbol{k} values must be 1.

Possible to have false positive; all \boldsymbol{k} values are 1, but \boldsymbol{y} is not in S.

n items
$m=c n$ bits
k hash functions

Truly Random Hash Functions

- Instead of using hash function families indexed by a small set like the set of (\mathbf{a}, \mathbf{b}) pairs let \mathcal{H} be the set of all possible functions from U to $\{0, \ldots, m-1\}$
- Then for any set of \boldsymbol{s} distinct elements $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{s}}$ of \mathbf{U} : $\operatorname{Pr}_{\mathrm{H} \in \mathscr{H}}\left[\mathrm{H}\left(\mathbf{x}_{1}\right)=\mathrm{a}_{1}, \ldots, \mathrm{H}\left(\mathbf{x}_{\mathrm{s}}\right)=\mathrm{a}_{\mathrm{s}}\right]=1 / \mathrm{m}^{\mathrm{s}}$
- Universal families don't achieve this for large s
- In reality analysis is approximate since we don't usue truly random functions
- Effectiveness in practice relies on data not being adversarial

False Positive Probability

- $\operatorname{Pr}($ specific bit of filter is 0$)$ is

$$
p^{\prime} \equiv(1-1 / m)^{k n} \approx e^{-k n / m} \equiv p \quad\left(p^{\prime} \leq p\right)
$$

- If β is fraction of 0 bits in the filter then false positive probability for a new element is
$(1-\beta)^{k} \approx\left(1-p^{\prime}\right)^{\mathrm{k}} \approx\left(1-\mathrm{p}^{\prime}\right)^{\mathrm{k}}=\left(1-\mathrm{e}^{-\mathrm{kn} / \mathrm{m}}\right)^{\mathrm{k}}$
- Approximations are almost exact since β is concentrated around $E[\beta]$.
- Find optimal at $\mathbf{k}=(\ln 2) \mathbf{m} / \mathbf{n}$ by calculus.
- So optimal false positive prob is about $(0.6185)^{m / n}$
n items $\quad m=c n$ bits $\quad k$ hash functions

Graph of $\left(1-e^{-k / c}\right)^{k}$ for $\mathrm{c}=8$

n items
$m=c n$ bits
k hash functions

Application Example

- Google BigTable uses Bloom filters to reduce the disk lookups for non-existent rows or columns.
- Avoiding costly disk lookups considerably increases the performance of a database query operation

Handling Deletions

- Bloom filters can handle insertions, but not deletions.

0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	0

- If deleting x_{i} means resetting 1's to 0's, then deleting x_{i} will "delete" x_{j}.

Counting Bloom Filters

Start with an m bit array, filled with Os.

Hash each item $\boldsymbol{x}_{\boldsymbol{j}}$ in $\boldsymbol{S} \boldsymbol{k}$ times. If $\boldsymbol{H}_{i}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\boldsymbol{a}$, add 1 to $\boldsymbol{B}[\boldsymbol{a}]$.

\boldsymbol{B}| 0 | 3 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

To delete x_{j} decrement the corresponding counters.

\boldsymbol{B}| 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Can obtain a corresponding Bloom filter by reducing to $0 / 1$.

\boldsymbol{B}| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Counting Bloom Filters: Overflow

- Must choose counters large enough to avoid overflow
- e.g. for c=8 choose 4 bits per counter
- Average load using $\mathbf{k}=(\ln 2) \mathbf{m} / \mathbf{n}$ counters is In 2.
- Probability a counter has load at least 16 is $\mathrm{e}^{-\ln 2}(\ln 2)^{16} / 16$! which is roughly 6.78×10^{-17}

Bloom filter variety

- There are alternative ways to design Bloom filter style data structures that are more effective for some variations, applications

Random Load Balancing

- Assigning tasks to servers
- Distributed/parallel environment
- No central control
- Tasks generated by processes anywhere
- Indistinguishable
- Goal: Assign tasks to servers in constant time keeping load balanced
- Simple approach
- assign each task to a random server
- Case for analysis
- n servers
- n tasks (average load 1)

Random Load Balancing: Tossing Balls into Bins

- tasks ミ balls, servers \equiv bins
- $\operatorname{Pr}[$ ball i in bin $j]=1 / n$
- $\operatorname{Pr}[\geq k$ balls in bin $j] \leq(n$ choose $k) n^{-k}$
$\leq\left(n^{k} / k!\right) n^{-k}$
$=1 / k!\approx 1 / k^{\Theta(k)}$
- $\operatorname{Pr}[\exists$ bin with $\geq k$ balls $] \leq n / k^{\Theta(k)}$
- In order for this to be small we need
$\mathbf{k}=\mathbf{\Omega}(\log \mathbf{n} / \log \log \mathbf{n})$
- Imbalance:
- Some bin will have Ω (log $\mathbf{n} / \log \log \mathbf{n}$) balls

Random Load Balancing: The Power of Two Choices

- Extra assumption:
- Process can detect current load of server prior to assignment
- Power of two choices algorithm: [Azar-Broder-Karlin-Upfal]
- For each task/ball choose 2 servers/bins uniformly at random
- Assign task/ball to less loaded server/bin
- More generally: make d random choices and assign to least loaded bin

Random Load Balancing: The Power of Two Choices

- Theorem [ABKU] With 2 random choices and assignment to the least loaded bin the no bin contains more than $\log \log \mathrm{n}+\mathrm{O}(1)$ balls almost certainly
- With d choices the load goes down to $\log \log \mathrm{n} / \log \mathrm{d}+\mathbf{O}(1)$
- Proof idea:
- For $\mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots$ let β_{i} be the fraction of bins with load at least i.

Power of 2 choices rough analysis

- Imagine assigning the balls sequentially
- Let $\beta_{i}(t) \leq \beta_{i}$ denote the fraction of bins with load at least i after t balls
- $\beta_{0}(t)=1$
- Clearly β_{2} is $\leq 1 / 2$ since there only n balls
- For $t+1^{\text {st }}$ ball to create a bin with load $\geq i+1 \geq 3$, all of its d bin choices must have load $\geq i$.
- Probability is at most $\left[\beta_{i}(t)\right]^{d} \leq \beta_{i}{ }^{d}$
- Associate each bin of load $\geq i+1$ with the ball inserted that created that load
- Expected total \# of bins contributing to β_{i+1} is $\leq n \beta_{i}{ }^{\text {d }}$
- Roughly implies that $\beta_{i+1} \leq \beta_{\mathrm{i}}{ }^{\mathrm{d}}$

Power of 2 choices rough analysis

- Since $\beta_{2} \leq 1 / 2$ and $\beta_{i+1} \leq \beta_{i}$ d we have $\beta_{k} \leq(1 / 2)^{d^{k-2}}$
- Now the expected \# of bins of load $\geq \mathbf{k}$ is $n \beta_{k} \leq n$ $(1 / 2)^{d^{k-2}}$
- This is less than 1 when $\mathbf{n}(1 / 2)^{d^{k-2}} \leq 1$ i.e. when $\log \mathbf{n} \leq \mathbf{d k}^{\mathbf{k}-2}$, that is when $\log \log \mathbf{n} \leq(\mathbf{k}-2) \log \mathbf{d}$ equivalently when $\mathbf{k} \geq \log \log \mathbf{n} / \log \mathbf{d}+2$
- This is just expected size but can show that with a small change in constant this holds with high probability, though proof is tricky

Extension: d-left Hashing

- Split hash table into d equal subtables.
- To insert, choose a bucket uniformly for each subtable.
- Place item in a cell in the least loaded bucket, breaking ties to the left.

Property of d-left Hashing

- [Vocking] Having d-separate tables of size \mathbf{n} / \mathbf{d} and tiebreaking to the left as in random d-left hashing is at least as good as independent choices.
- Almost surely the most loaded bin has load at most $\log \log \mathrm{n} /\left(\mathrm{d} \Phi_{\mathrm{d}}\right)+\mathbf{O}(1)$ where $\Phi_{\mathrm{d}} \leq 2$

Cuckoo Hashing

- Simple dynamic perfect hashing using power of 2 choices
- Use 2 random hash functions h_{0} and h_{1} to 2 tables of size $(1+\varepsilon) \mathbf{n}$
- To insert \mathbf{x}
- If bin $h_{0}(x)$ is full then check $h_{1}(x)$.
- if both full then bin $h_{0}(x)$ contains some y with $h_{0}(y)=h_{0}(x)$ so set $b=1$ and repeat:
- kick y out of its nest (as cuckoos do) and insert it in its unique alternative place $\mathbf{h}_{b}(\mathbf{y})$, kicking out whatever \mathbf{z} is already there
- $y \leftarrow z ; \quad b \leftarrow 1-b$
- It is possible that a cycle is created. To handle this add a max \# of iterations through the loop and then rebuild the table using new random hash functions

