CSE 521: Design &

| Analysis of Algorithms |

Some Useful Hashing Data Structures

Paul Beame

i Some Random Data Structure Ideas

= Bloom Filters
= Quick certification of non-membership in a set

= The power of two random choices
= Better load balancing

= Cuckoo hashing

= Using two choices and data movement for a
simple efficient dynamic dictionary data structure

i Bloom Filters

= Given a set S = {X,X,,X5,...,X,,} On a
universe U, want to answer gueries of
the form:

ISYy/[S?

= Bloom filter provides an answer In
= “Constant” time (to hash).
= Small amount of space.
=« But with small probability of a false positive
« Useful when the answer is usually NO

Exact Computation based on
i Universal Hash Function Families

= Family of functions #

= Each HOA satisfies H: U — {0,...,m-1}

= Assume that H is chosen from # at random
Independent of the elements of S

= Universal Hash Function Family
= For any x#zyl U, Prygz[H(X)=H(y)]=1/m

= Example Universal Family: #
« U={0,...,2N-1}, m=2M
= each function specified by pair (a,b) where a is an
(M+N)-bit integer and b[}{0,...,m-1}

= Hg p(X)=middle M bits of ax+b (which is M+2N
bits long)

Exact Computation based on
i Universal Hash Function Families

= Hash the elements of U

= Collisions:
= Open hashing
« Place them nearby in the table
= Separate chaining
« Extra pointers to follow
= Double hashing

= Additional hash table for set of elements that
within each table entry

= Can be made into a perfect hash function with
low failure probability but is complex

i Bloom Filters

Start with an m bit array, filled with Os.

Blolo|o|o|o|lofo|lofo|o|O]|O]O]|O]|O]O

Hash each item x; In S k times. If H; (x;) = a, set B[a] = 1.

Blol1]lolo|l2]ol1]lo|lol2l2]l2lol2]l1]0

Tocheckifyisin S, check B at H,(y). All k values must be 1.
Blo|l1|o|lo|1]|o]|a|ofof1|1|2]|0]2|1]o0

Possible to have false positive; all k values are 1, buty is notin S.

Blol1lo]lo|l1]olz2]ololal1l2lol2af1]0

n items m = cn bits k hash functions

Truly Random Hash Functions

= Instead of using hash function families indexed by a
small set like the set of (a,b) pairs let #€ be the set of
all possible functions from U to {0,...,m-1}

= Then for any set of s distinct elements x.,...,x. of U:
Pryoge [H(X)=ay,...,H(Xs)=as] =1/ms

= Universal families don’t achieve this for large s
= Inreality analysis is approximate since we don’t usue truly
random functions
= Effectiveness in practice relies on data not being adversarial

i False Positive Probability

= Pr(specific bit of filter is 0) is
p' = (1-U/m)n=e*m=p (p'<p)
= If B Is fraction of O bits in the filter then false
positive probability for a new element is

(1-B) = (1-p)¢ =(1- p')*= (1-enm)k

= Approximations are almost exact since 3 is
concentrated around E[fB].

= Find optimal at k = (In 2) m/n by calculus.
= So optimal false positive prob is about (0.6185)™n

n items m = cn bits k hash functions

]L Graph of (1-e’¥c) for c=8

0.1
0.09 -
0.08 -
0.07 - m/n = 8
0.06 -

0.05 Optk =8In2=5.45...
0.04 - V

0.03 - —

0.02 -]
0.01 -

e ——

0 1 2 3 4 5 6 7 8 9 10

Hash functions

False positiverate

n items m = cn bits k hash functions
9

i Application Example

= Google BigTable uses Bloom filters to
reduce the disk lookups for non-existent
rows or columns.
= Avoiding costly disk lookups considerably

Increases the performance of a database
guery operation

10

i Handling Deletions

= Bloom filters can handle insertions, but
not deletions.

= If deleting x; means resetting 1's to 0’s,
then deleting x; will “delete” x;.

11

i Counting Bloom Filters

B

Start with an m bit array, filled with Os.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hash each item x; in S k times. If H(x;) = a, add 1 to Bla].

0

3

0

0

1

0

2

0

0

3

2

1

0

2

1

To delete x; decrement the corresponding counters.

0

2

0

0

0

0

2

0

0

3

2

1

0

1

1

Can obtain a corresponding Bloom filter by reducing to O/1.

0

1

0

0

0

0

1

0

0

1

1

1

0

1

1

12

i Counting Bloom Filters: Overflow

= Must choose counters large enough to
avoid overflow

= €.g. for c=8 choose 4 bits per counter

» Average load using k = (In 2) m/n counters is
In 2.

= Probability a counter has load at least 16 is
e’n2 (In 2)16/16! which is roughly 6.78x10-17

13

i Bloom filter variety

= There are alternative ways to design Bloom
filter style data structures that are more
effective for some variations, applications

14

i Random Load Balancing

= Assigning tasks to servers
= Distributed/parallel environment
= No central control
= Tasks generated by processes anywhere
« Indistinguishable

= Goal: Assign tasks to servers in constant time
keeping load balanced

= Simple approach
= assign each task to a random server

= Case for analysis
= N servers
= N tasks (average load 1)

15

Random Load Balancing:
Tossing Balls into Bins

tasks

= balls, servers = bins

Pr [ball i inbinj]=1/n

Pr [

k balls in binj] < (n choose k) nk

< (nk/k!) nk
=1/k! =1/kOk)

Pr[[

N orc
K=Q(

0in with = k balls] < n/k®®)

er for this to be small we need
og n/loglog n)

mba

ance.

= Some bin will have Q(log n/loglog n) balls

16

Random Load

Balancing:

i The Power of Two Choices

= Extra assumption:

= Process can detect current load of server
prior to assignment

= Power of two c
[Azar-Broder-Kar

= For each task/

noices algorithm:
In-Upfal]
nall choose 2 servers/bins

uniformly at random
= Assign task/ball to less loaded server/bin
= More generally: make d random choices

and assign to |

east loaded bin

17

Random Load Balancing:
i The Power of Two Choices

= Theorem [ABKU] With 2 random
choices and assignment to the least
loaded bin the no bin contains more
than log log n+0O(1) balls almost
certainly

= With d choices the load goes down to
loglog n/log d+0O(1)

= Proof idea:

» Fori=0,1,... let 3; be the fraction of bins
with load at least I.

18

i Power of 2 choices rough analysis

= Imagine assigning the balls sequentially

= Let B3;(t)<[5; denote the fraction of bins with load at
least | after t balls

= [Bo(t)=1
» Clearly 3, Is = %2 since there only n balls

= For t+1st ball to create a bin with load = i+1=3, all
of its d bin choices must have load = I.

= Probability is at most [B. (t)]¢ < B,

= Associate each bin of load = i+1 with the ball
Inserted that created that load

. Expected total # of bins contributing to (3.,
is<nf¢

= Roughly implies that B,; < 3, ¢

19

4

Power of 2 choices rough analysis

Since B,=%2and B, <39 we have = [, < (1/2)dk'2

Now the expected # of bins of load =2k isn 3, =n
(1/2)dk'2

This is less than 1 when n (1/2)dk'2S1 l.e. when

log n < dk2, that is when loglog n <(k-2) log d
equivalently when k= loglog n/log d + 2

This is just expected size but can show that with a

small change in constant this holds with high
probability, though proof is tricky

20

i Extension: d-left Hashing

@] (@) @)
01010 O Ol10|0]0 O O @
OlO1010|O0|10|10]|0|0O @) [©] [0] |0] (0] (6] [e] 0] (0] (¢

= Split hash table into d equal subtables.

= To Insert, choose a bucket uniformly for each
subtable.

= Place item in a cell in the least loaded bucket,
breaking ties to the left.

010

21

i Property of d-left Hashing

= [Vocking] Having d-separate tables of
size n/d and tiebreaking to the left as In
random d-left hashing is at least as
good as independent choices.

= Almost surely the most loaded bin has load
at most loglog n/(d®4)+0O(1) where ® < 2

22

Cuckoo Hashing

= Simple dynamic perfect hashing using power of 2
choices
= Use 2 random hash functions h, and h, to 2 tables of size
(1+€)n
= Toinsert x
= If bin hy(x) is full then check h(x).
« if both full then bin h,(x) contains some y with
hy(y)=hy(X) so set b=1 and repeat:

= kick y out of its nest (as cuckoos do) and insert it in
Its unique alternative place h,(y), kicking out
whatever z is already there

my<«—2, b«<1-D

= Itis possible that a cycle is created. To handle this add a
max # of iterations through the loop and then rebuild the

table using new random hash functions
23

