CSE 521: Design & Analysis of Algorithms I

Some Useful Hashing Data Structures

Paul Beame

Some Random Data Structure Ideas

- Bloom Filters
 - Quick certification of non-membership in a set
- The power of two random choices
 - Better load balancing
- Cuckoo hashing
 - Using two choices and data movement for a simple efficient dynamic dictionary data structure

Bloom Filters

Given a set S = {x₁,x₂,x₃,...,x_n} on a universe U, want to answer queries of the form:

ls **y∈S** ?

- Bloom filter provides an answer in
 - "Constant" time (to hash).
 - Small amount of space.
 - But with small probability of a false positive
 - Useful when the answer is usually NO

Exact Computation based on Universal Hash Function Families

- Family of functions \mathcal{H}
 - Each $H \in \mathcal{H}$ satisfies $H : U \rightarrow \{0, ..., m-1\}$
 - Assume that H is chosen from H at random independent of the elements of S
- Universal Hash Function Family
 - For any $x \neq y \in U$, $Pr_{H \in \mathcal{H}}[H(x)=H(y)]=1/m$
- Example Universal Family: *H*
 - $U = \{0, ..., 2^{N} 1\}, m = 2^{M}$
 - each function specified by pair (a,b) where a is an (M+N)-bit integer and b∈ {0,...,m-1}
 - H_(a,b)(x)=middle M bits of ax+b (which is M+2N bits long)

Exact Computation based on Universal Hash Function Families

- Hash the elements of U
- Collisions:
 - Open hashing
 - Place them nearby in the table
 - Separate chaining
 - Extra pointers to follow
 - Double hashing
 - Additional hash table for set of elements that within each table entry
 - Can be made into a perfect hash function with low failure probability but is complex

Truly Random Hash Functions

- Instead of using hash function families indexed by a small set like the set of (a,b) pairs let *H* be the set of all possible functions from U to {0,...,m-1}
- Then for any set of s distinct elements x₁,...,x_s of U: Pr_{H∈ℋ} [H(x₁)=a₁,...,H(x_s)=a_s] =1/m^s
- Universal families don't achieve this for large s
 - In reality analysis is approximate since we don't usue truly random functions
 - Effectiveness in practice relies on data not being adversarial

False Positive Probability

- Pr(specific bit of filter is 0) is
 p' ≡ (1-1/m)^{kn} ≈ e^{-kn/m} ≡ p (p'≤p)
- If β is fraction of 0 bits in the filter then false positive probability for a new element is
 (1-β)^k ≈ (1-p')^k ≈ (1-p')^k= (1-e^{-kn/m})^k
- Approximations are almost exact since β is concentrated around E[β].
- Find optimal at $\mathbf{k} = (\ln 2) \mathbf{m}/\mathbf{n}$ by calculus.
 - So optimal false positive prob is about (0.6185)^{m/n}

Application Example

- Google <u>BigTable</u> uses Bloom filters to reduce the disk lookups for non-existent rows or columns.
 - Avoiding costly disk lookups considerably increases the performance of a database query operation

 Bloom filters can handle insertions, but not deletions.

If deleting x_i means resetting 1's to 0's, then deleting x_i will "delete" x_i.

Counting Bloom Filters

Start with an **m** bit array, filled with 0s.

Hash each item x_i in **S** k times. If $H_i(x_i) = a$, add 1 to **B**[a].

To delete \mathbf{x}_i decrement the corresponding counters.

B 0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0

Can obtain a corresponding Bloom filter by reducing to 0/1.

B 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0

Counting Bloom Filters: Overflow

- Must choose counters large enough to avoid overflow
 - e.g. for c=8 choose 4 bits per counter
 - Average load using k = (ln 2) m/n counters is ln 2.
 - Probability a counter has load at least 16 is
 e^{-ln 2} (ln 2)¹⁶/16! which is roughly 6.78×10⁻¹⁷

Bloom filter variety

There are alternative ways to design Bloom filter style data structures that are more effective for some variations, applications

Random Load Balancing

- Assigning tasks to servers
 - Distributed/parallel environment
 - No central control
 - Tasks generated by processes anywhere
 - Indistinguishable
 - Goal: Assign tasks to servers in constant time keeping load balanced
- Simple approach
 - assign each task to a random server
- Case for analysis
 - n servers
 - n tasks (average load 1)

Random Load Balancing: Tossing Balls into Bins

- tasks ≡ balls, servers ≡ bins
- Pr [ball i in bin j] =1/n
- Pr [≥ k balls in bin j] ≤ (n choose k) n^{-k}
 ≤ (n^k/k!) n^{-k}
 =1/k!≈1/k^{Θ(k)}
- $\Pr[\exists bin with \ge k balls] \le n/k^{\Theta(k)}$
- In order for this to be small we need
 k=Ω(log n/loglog n)
- Imbalance:
 - Some bin will have Ω(log n/loglog n) balls

Random Load Balancing: The Power of Two Choices

- Extra assumption:
 - Process can detect current load of server prior to assignment
- Power of two choices algorithm: [Azar-Broder-Karlin-Upfal]
 - For each task/ball choose 2 servers/bins uniformly at random
 - Assign task/ball to less loaded server/bin
 - More generally: make d random choices and assign to least loaded bin

Random Load Balancing: The Power of Two Choices

- Theorem [ABKU] With 2 random choices and assignment to the least loaded bin the no bin contains more than log log n+O(1) balls almost certainly
 - With d choices the load goes down to loglog n/log d+O(1)
- Proof idea:
 - For i=0,1,... let β_i be the fraction of bins with load at least i.

Power of 2 choices rough analysis

- Imagine assigning the balls sequentially
 - Let β_i(t)≤β_i denote the fraction of bins with load at least i after t balls
 - β₀(t)=1
 - Clearly β_2 is $\leq \frac{1}{2}$ since there only **n** balls
 - For t+1st ball to create a bin with load ≥ i+1≥3, all of its d bin choices must have load ≥ i.
 - Probability is at most $[\beta_i(t)]^d \leq \beta_i^d$
 - Associate each bin of load ≥ i+1 with the ball inserted that created that load
 - Expected total # of bins contributing to β_{i+1} is $\leq n \beta_i^d$
 - Roughly implies that $\beta_{i+1} \leq \beta_i^d$

Power of 2 choices rough analysis

- Since $\beta_2 \le \frac{1}{2}$ and $\beta_{i+1} \le \beta_i^d$ we have $\beta_k \le (\frac{1}{2})^{d^{k-2}}$
- Now the expected # of bins of load ≥ k is n β_k ≤ n (1/2)^{d^{k-2}}
- This is less than 1 when n (½)^{d^{k-2}≤1} i.e. when log n ≤ d^{k-2}, that is when loglog n ≤(k-2) log d equivalently when k≥ loglog n/log d + 2
- This is just expected size but can show that with a small change in constant this holds with high probability, though proof is tricky

- Split hash table into *d* equal subtables.
- To insert, choose a bucket uniformly for each subtable.
- Place item in a cell in the least loaded bucket, breaking ties to the left.

Property of *d*-left Hashing

- [Vocking] Having d-separate tables of size n/d and tiebreaking to the left as in random d-left hashing is at least as good as independent choices.
 - Almost surely the most loaded bin has load at most loglog $n/(d\Phi_d)+O(1)$ where $\Phi_d \le 2$

Cuckoo Hashing

- Simple dynamic perfect hashing using power of 2 choices
 - Use 2 random hash functions h₀ and h₁ to 2 tables of size (1+ε)n
 - To insert x
 - If bin h₀(x) is full then check h₁(x).
 - if both full then bin h₀(x) contains some y with h₀(y)=h₀(x) so set b=1 and repeat:
 - kick y out of its nest (as cuckoos do) and insert it in its unique alternative place h_b(y), kicking out whatever z is already there
 - y ← z; b ←1 − b
 - It is possible that a cycle is created. To handle this add a max # of iterations through the loop and then rebuild the table using new random hash functions