CSE 521: Design and Analysis of Algorithms I

Randomized Algorithms: Primality Testing

Paul Beame

Randomized Algorithms

- QuickSelect and Quicksort
- Algorithms' random choices make them fast and simple but don't affect correctness
- Not only flavor of algorithmic use of randomness
- Def: A randomized algorithm A computes a function f with error at most ε iff
- For every input x the probability over the random choices of A that A outputs $f(x)$ on input x is $\geq 1-\varepsilon$
- Error at most 2^{-100} is practically just as good as 0
- Chance of fault in hardware is larger

Primality Testing

- Given an \mathbf{n}-bit integer \mathbf{N} determine whether or not \mathbf{N} is prime.
- Obvious algorithm: Try to factor \mathbf{N}
- Try all divisors up to $\mathbf{N}^{1 / 2} \leq 2^{\mathbf{n} / 2}$.
- Best factoring algorithms run in $\geq 2^{n^{1 / 3}}$ time
- Rabin-Miller randomized algorithm
- If \mathbf{N} is prime always outputs "prime"
- If \mathbf{N} is composite
- outputs "composite" with probability 1-2-2t
- outputs "prime" with probability $2^{-2 t}$
- [AKS 2002] Polynomial-time deterministic algorithm.
- Much less efficient, though.

Rabin-Miller Algorithm

- If \mathbf{N} is even then output "prime" if $\mathbf{N}=\mathbf{2}$ and "composite" otherwise and then halt
- Compute k and d such that $\mathbf{N}-1=\mathbf{2}^{\mathrm{k}} \mathbf{d}$ where d is odd
- For $\mathrm{j}=1$ to t do
- Choose random a from $\{1, \ldots, \mathrm{~N}-1\}$
- Compute $\mathbf{b}_{0}=a^{d} \bmod \mathbf{N}$ using powering by repeated squaring
- For $\mathrm{i}=1$ to k do
- Compute $b_{i}=b_{i-1}{ }^{2} \bmod \mathbf{N}=a^{2^{i} d} \bmod \mathbf{N}$
- If $b_{i}=1$ and $b_{i-1} \neq \pm 1$ output "composite" and halt
- If $\mathbf{b}_{\mathbf{k}}=\mathbf{a}^{\mathrm{N}-1} \bmod \mathbf{N} \neq 1$ output "composite" and halt
- Output "prime"
- Running time: $\mathbf{O}(\mathbf{t n})$ multiplications mod \mathbf{N}

Rabin-Miller analysis

- We will prove slightly weaker bound:
- If \mathbf{N} is prime always outputs "prime"
- If \mathbf{N} is composite
- outputs "composite" with probability 1-2-t
- outputs "prime" with probability 2-t
- Whenever output is "composite" \mathbf{N} is composite:
- Fermat's Little Theorem: If \mathbf{N} is prime and a is in $\{\mathbf{1}, \ldots, \mathbf{N}-\mathbf{1}\}$ then $\mathrm{a}^{\mathrm{N}-1} \bmod \mathrm{~N}=1$
- So $a^{\mathrm{N}-1} \bmod \mathbf{N} \neq 1$ implies \mathbf{N} is composite
- If $b_{i}=b_{i-1}{ }^{2} \bmod \mathbf{N}=1$ then \mathbf{N} divides $\left(b_{i-1}{ }^{2}-1\right)=\left(b_{i-1}-1\right)\left(b_{i-1}+1\right)$ SO if N is prime then \mathbf{N} divides $\left(b_{i-1}-1\right)$ or $\left(b_{i-1}+1\right)$ and thus $b_{i-1}=b_{i-1} \bmod N= \pm 1$
- So $b_{i}=1$ and $b_{i-1} \neq \pm 1$ implies N is composite

Some observations

- Let m be any integer >0
- If $\operatorname{gcd}(\mathbf{a}, \mathbf{N})>\mathbf{1}$ for $\mathbf{0}<\mathbf{a}<\mathbf{N}$ then \mathbf{N} is composite but also $\operatorname{gcd}\left(\mathbf{a}^{m}, \mathbf{N}\right)>1$ so $\mathbf{a}^{m} \bmod \mathbf{N} \neq 1$
- Algorithm will test $\mathrm{m}=\mathrm{N}-1$ and output "composite"
- Write $\mathbf{Z}_{\mathbf{N}}{ }^{*}=\{\mathbf{a} \mid 0<\mathbf{a}<\mathbf{N}$ and $\operatorname{gcd}(\mathbf{a}, \mathbf{N})=1\}$
- Euclid's algorithm shows that every \mathbf{b} in $\mathbf{Z}_{\mathrm{N}}{ }^{*}$ has an inverse \mathbf{b}^{-1} in $\mathbf{Z}_{\mathbf{N}}{ }^{*}$ such that $\mathbf{b}^{-1} \mathbf{b}$ mod $\mathbf{N}=\mathbf{1}$
- Let $G_{m}=\left\{a\right.$ in $\left.Z_{N}{ }^{*} \mid a^{m} \bmod \mathbf{N}=1\right\}$
- Claim: If there is $\mathbf{a} \mathbf{b}$ in $\mathbf{Z}_{\mathbf{N}}{ }^{*}$ but not in $\mathbf{G}_{\mathbf{m}}$ then

$$
\left|G_{m}\right| \leq\left|Z_{N}{ }^{*}\right| / 2 .
$$

Some observations

- $\mathbf{Z}_{\mathbf{N}}{ }^{*}=\{\mathbf{a} \mid 0<\mathbf{a}<\mathbf{N}$ and $\operatorname{gcd}(\mathbf{a}, \mathbf{N})=1\}$
- Let $\mathbf{G}_{\mathrm{m}}=\left\{\mathbf{a}\right.$ in $\left.\mathbf{Z}_{\mathrm{N}}{ }^{*} \mid \mathbf{a}^{\mathrm{m}} \bmod \mathbf{N}=\mathbf{1}\right\}$
- Claim: If there is $\mathbf{a} \mathbf{b}$ in $\mathbf{Z}_{\mathrm{N}}{ }^{*}$ but not in \mathbf{G}_{m} then $\left|G_{m}\right| \leq\left|Z_{N}{ }^{*}\right| / 2$.
- Consider $\mathrm{H}_{\mathrm{m}}=\left\{\right.$ ba $\bmod \mathbf{N} \mid \mathbf{a}$ in $\left.\mathbf{G}_{\mathrm{m}}\right\} \subseteq \mathbf{Z}_{\mathrm{N}}{ }^{*}$.
- Then $\left|\mathrm{H}_{\mathrm{m}}\right|=\left|\mathrm{G}_{\mathrm{m}}\right|$ since $\mathrm{ba}_{1}=\mathrm{ba}_{2}$ mod \mathbf{N} implies $a_{1}=a_{2} \bmod N$
- Also for \mathbf{c} in $H_{m}, \mathbf{c}=$ ba $\bmod \mathbf{N}$ for some \mathbf{a} in \mathbf{G}_{m}. so $\mathbf{c}^{m} \bmod \mathbf{N}=(\mathbf{b a})^{m} \bmod \mathbf{N}$

$$
=b^{m} a^{m} \bmod N=b^{m} \bmod N \neq 1 .
$$

Carmichael Numbers

- So... if there is even one a such that $\mathbf{a}^{\mathbf{N}-1} \bmod \mathbf{N} \neq \mathbf{1}$ then \mathbf{N} is composite and at least half the possible a also satisfy this and the algorithm will output "composite" with probability $\geq 1 / 2$ on each time through the loop
- Chance of failure over t iterations $\leq 2^{-t}$.
- Odd composite numbers (e.g. $\mathrm{N}=361$) that have $\mathrm{a}^{\mathrm{N}-1} \bmod \mathrm{~N}=1$ for all a in $\mathrm{Z}_{\mathrm{N}}{ }^{*}$ are called Carmichael numbers
- Fact: Carmichael numbers are not powers of primes
- Only need to consider the case of $N=q_{1} q_{2}$ where $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$

Rabin-Miller analysis

- Need the other part of the Rabin-Miller test
- If $b_{i}=a^{2^{i d}} \bmod N=1$ and $b_{i-1}=a^{2^{i-1} d} \bmod N \neq \pm 1$ output "composite"
- Chinese Remainder Theorem:
- If $N=q_{1} \boldsymbol{q}_{2}$ where $\operatorname{gcd}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=\mathbf{1}$ then for every r_{1}, r_{2} with $0 \leq r_{i} \leq q_{i}-1$ there is a unique integer M in $\{0, \ldots, N-1\}$ such that M mod $q_{i}=r_{i}$ for $i=1,2$.
(One-to-one correspondence between integers \mathbf{M} and pairs $\mathrm{r}_{1}, \mathrm{r}_{2}$)
- $M=1 \leftrightarrow(1,1), M=-1=N-1 \leftrightarrow\left(q_{1}-1, q_{2}-1\right)=(-1,-1)$
- Other values of \mathbf{M} such that $\mathbf{M}^{2} \bmod \mathbf{N}=1$ correspond to pairs (1,-1) and (-1,1)

Finishing up

- Consider the largest i such that there is some a_{1} in $Z_{N}{ }^{*}$ with $a_{1}{ }^{i^{-1}} \mathrm{~d} \bmod \mathrm{~N}=-1$ and let $\mathrm{r}_{\mathrm{i}}=\mathrm{a}_{1} \bmod \mathrm{q}_{\mathrm{i}}$
- Since $a_{1} \neq 1,\left(r_{1}, r_{2}\right) \neq(1,1)$. Assume wlog $r_{1} \neq 1$.
- Let $\mathbf{G}=\left\{\mathbf{a}\right.$ in $\left.\mathbf{Z}_{N}{ }^{*} \mid \mathbf{a}^{\mathbf{2}^{i-1} \mathrm{~d}} \bmod \mathbf{N}= \pm 1\right\}$
- By Chinese Remainder Theorem consider \mathbf{b} in $\mathbf{Z}_{\mathrm{N}}{ }^{\text {* }}$ corresponding to the pair $\left(r_{1}, \mathbf{1}\right)$.
- Then $\mathbf{b}^{2 i d} \bmod \mathbf{q}_{1}=1$ and $\mathbf{b}^{\mathbf{b}^{i d}} \bmod \mathbf{q}_{2}=1$ so $\mathbf{b}^{2^{i d} d} \bmod \mathbf{N}=1$
- But $b^{2^{i-1} d} \bmod \mathbf{q}_{1}=-1$ and $b^{2^{i-1} d} \bmod \mathbf{q}_{2}=1$ so $b^{b^{i-1} d} \bmod \mathbf{N} \neq \pm 1$
- By similar reasoning as before every element of $\mathbf{H}=\{b a \mid a \operatorname{in~} G\}$ is in $\mathbf{Z}_{N}{ }^{*}$ but not in \mathbf{G} so $|\mathbf{G}| \leq\left|\mathbf{Z}^{*}{ }^{*}\right| / 2$ and the algorithm will choose an element not in G with probability $\geq 1 / 2$ per iteration and output "composite" with probability $\geq 1-2^{-t}$ overall

Relationship to Factoring

- In the second case the algorithm finds an x such that $\mathbf{x}^{2} \bmod \mathbf{N}=1$ but $\mathbf{x} \bmod \mathbf{N} \neq \pm 1$
- Then \mathbf{N} divides $\left(\mathbf{x}^{2}-\mathbf{1}\right)=(\mathbf{x}+\mathbf{1})(\mathbf{x}-\mathbf{1})$ but \mathbf{N} does not divide ($\mathrm{x}+1$) or ($\mathrm{x}-1$)
- Therefore \mathbf{N} has a non-trivial common factor with both $\mathbf{x + 1}$ and $\mathbf{x - 1}$
- Can partially factor \mathbf{N} by computing $\operatorname{gcd}(\mathbf{x}-\mathbf{1}, \mathbf{N})$
- Finding pairs x and y such that $x^{2} \bmod N=y^{2}$ but $\mathbf{x} \neq \pm \mathbf{y}$ is the key to most practical algorithms for factoring (e.g. Quadratic Sieve)

Basic RSA Application

- Choose two random n-bit primes p, q
- Repeatedly choose n-bit odd numbers and check whether they are prime
- The probability that an n-bit number is prime is $\Omega(1 / \mathrm{n})$ by the Prime Number Theorem so only O(n) trials required on average
- Public Key is $\mathbf{N}=\mathbf{p q}$ and random \mathbf{e} in $\mathbf{Z}_{\mathbf{N}}{ }^{*}$
- Encoding message \mathbf{m} is $\mathrm{m}^{\mathrm{e}} \bmod \mathbf{N}$
- Secret Key is (\mathbf{p}, \mathbf{q}) which allows one to compute $\varphi(\mathbf{N})=\mathbf{N}-\mathbf{p}-\mathbf{q}+\mathbf{1}$ and $\mathbf{d}=\mathbf{e}^{-1} \bmod \varphi(\mathbf{N})$
- Decryption of ciphertext \mathbf{c} is $\mathbf{c}^{\mathbf{d}} \bmod \mathbf{N}$
- Note: Some implementations (e.g. PGP) don't do full Rabin-Miller test

