CSE 521: Design and Analysis of Algorithms I

Stable Matching

Paul Beame

Matching Residents to Hospitals

- Goal: Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.
- Unstable pair: applicant \mathbf{x} and hospital \mathbf{y} are unstable if:
- x prefers y to their assigned hospital.
- y prefers x to one of its admitted students.
- Stable assignment. Assignment with no unstable pairs.
- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

- Goal. Given n men and \mathbf{n} women, find a "suitable" matching.
- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

Men's Preference Profile

Women's Preference Profile

Stable Matching Problem

- Perfect matching: everyone is matched monogamously.
- Each man gets exactly one woman.
- Each woman gets exactly one man.
- Stability: no incentive for some pair of participants to undermine assignment by joint action.
- In matching \mathbf{M}, an unmatched pair $\mathbf{m}-\mathbf{w}$ is unstable if man \mathbf{m} and woman w prefer each other to current partners.
- Unstable pair m-w could each improve by eloping.
- Stable matching: perfect matching with no unstable pairs.
- Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

Stable Matching Problem

- Q. Is assignment $\mathrm{X}-\mathrm{C}, \mathrm{Y}-\mathrm{B}, \mathrm{Z}-\mathrm{A}$ stable?

	favorite \downarrow		least favorit \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
Xavier	Amy	Brenda	Claire
Yuri	Brenda	Amy	Claire
Zoran	Amy	Brenda	Claire
Men's Preference Profile			

	favorite		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
Amy	Yuri	Xavier	Zoran
Brenda	Xavier	Yuri	Zoran
Claire	Xavier	Yuri	Zoran

Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?
- A. No. Brenda and Xavier will hook up.

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
Xavier	Amy	Brenda	Claire
Yuri	Brenda	Amy	Claire
Zoran	Amy	Brenda	Claire
Men's Preference Profile			

	favorite \downarrow		least favorit \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
Amy	Yuri	Xavier	Zoran
Brenda	Xavier	Yuri	Zoran
Claire	Xavier	Yuri	Zoran

Stable Matching Problem

- Q. Is assignment X-A, Y-B, Z-C stable?
- A. Yes.

	favorite \downarrow		
	$1^{\text {st }}$	$2^{\text {nd }}$	3 least favorite
	Amy	Brenda	Claire
Xavier	Am		
Yuri	Brenda	Amy	Claire
Zoran	Amy	Brenda	Claire
Men's Preference Profile			

	favorite \downarrow		least favorite \downarrow	
	$1^{\text {st }}$	2nd	$3^{\text {rd }}$	
Amy	Yuri	Xavier	Zoran	
Brenda	Xavier	Yuri	Zoran	
Claire	Xavier	Yuri	Zoran	
Women's Preference Profile				

Stable Roommate Problem

- Q. Do stable matchings always exist?
- A. Not obvious a priori.
- Stable roommate problem.
- $2 n$ people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

	$1^{s t}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Adam	B	C	D
Bob	C	A	D
Chris	A	B	D
David	A	B	C

$$
\begin{aligned}
& A-B, C-D \Rightarrow B-C \text { unstable } \\
& A-C, B-D \Rightarrow A-B \text { unstable } \\
& A-D, B-C \Rightarrow A-C \text { unstable }
\end{aligned}
$$

- Observation. Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    W = 1st woman on m's list to whom m has not yet proposed
    if (W is free)
            assign m and w to be engaged
    else if (W prefers m to her fiancé m')
            assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```


Proof of Correctness: Termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most \mathbf{n}^{2} iterations of while loop.
- Proof. Each time through the while loop a man proposes to a new woman. There are only \mathbf{n}^{2} possible proposals.

1	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$		$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Victor	A	B	C	D	E	Amy	W	X	y	Z	V
Walter	B	C	D	A	E	Brenda	X	Y	Z	V	W
Xavier	C	D	A	B	E	Claire	Y	Z	V	W	X
Yuri	D	A	B	C	E	Diane	Z	V	W	X	Y
Zoran	A	B	C	D	E	Erika	V	W	X	Y	Z

$n(n-1)+1$ proposals required

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Proof. (by contradiction)
- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
- But, Zoran proposes to everyone, since he ends up unmatched. •

Proof of Correctness: Stability

- Claim. No unstable pairs.
- Proof. (by contradiction)
- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching \mathbf{S}^{*}.
- Case 1: \mathbf{Z} never proposed to \mathbf{A}. $\begin{aligned} & \text { men propose in decreasing } \\ & \text { order of preference }\end{aligned}$ $\Rightarrow \mathbf{Z}$ prefers his GS partner to \mathbf{A}.
$\Rightarrow A-Z$ is stable.
- Case 2: Z proposed to \mathbf{A}.
$\Rightarrow \mathrm{A}$ rejected \mathbf{Z} (right away or later)
\Rightarrow A prefers her GS partner to Z.
$\Rightarrow A-Z$ is stable.
- In either case A-Z is stable, a contradiction. •

Summary

- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
- Q. How to implement GS algorithm efficiently?
- Q. If there are multiple stable matchings, which one does GS find?

Implementation for Stable Matching Algorithms

- Problem size
- $\mathrm{N}=2 \mathbf{n}^{2}$ words
- 2n people each with a preference list of length n
- $2 \mathbf{n}^{2} \log n$ bits
- specifying an ordering for each preference list takes nlog \mathbf{n} bits
- Brute force algorithm
- Try all n! possible matchings
- Do any of them work?
- Gale-Shapley Algorithm
- n^{2} iterations, each costing constant time as follows:

Efficient Implementation

- Efficient implementation. We describe $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time implementation.
- Representing men and women.
- Assume men are named $\mathbf{1 , \ldots , n}$.
- Assume women are named 1', ..., n'.
- Engagements.
- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife[m], and husband[w].
- set entry to 0 if unmatched
- if \mathbf{m} matched to \mathbf{w} then wife[$\mathbf{m}]=\mathbf{w}$ and husband[w]=m
- Men proposing.
- For each man, maintain a list of women, ordered by preference.
- Maintain an array count[m] that counts the number of proposals made by man m.

Efficient Implementation

- Women rejecting/accepting.
- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after $\mathbf{O}(\mathbf{n})$ preprocessing.

Amy	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$
Pref	8	3	7	1	4	5	6	2

Amy	1	2	3	4	5	6	7	8
Inverse	$4^{\text {th }}$	$8^{\text {th }}$	$2^{\text {nd }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$3^{\text {rd }}$	$1^{\text {st }}$

```
for i = 1 to n
    inverse[pref[i]] = i
```

Amy prefers man 3 to 6
since inverse [3] =2 < 7=inverse [6]

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	A	B	C
Yuri	B	A	C
Zoran	A	B	C

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	X	Z
Brenda	X	Y	Z
Claire	X	Y	Z

- An instance with two stable matchings.
- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Man \mathbf{m} is a valid partner of woman \mathbf{w} if there exists some stable matching in which they are matched.
- Man-optimal assignment. Each man receives best valid partner (according to his preferences).
- Claim. All executions of GS yield a man-optimal assignment, which is a stable matching!
- No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
- Simultaneously best for each and every man.
- Claim. GS matching S* * is man-optimal.
- Proof. (by contradiction)
- Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference \Rightarrow some man is rejected by a valid partner.
- Let \mathbf{Y} be first such man, and let \mathbf{A} be the first valid woman that rejects him.
- Let S be a stable matching where A and Y are matched.
- In building \mathbf{S}^{\star}, when \mathbf{Y} is rejected, \mathbf{A} forms (or reaffirms) engagement with a man, say \mathbf{Z}, whom she prefers to Y .
- Let B be Z's partner in S.
- In building \mathbf{S}^{\star}, \mathbf{Z} is not rejected by any valid partner at the point when Y is rejected by A .
- Thus, \mathbf{Z} prefers \mathbf{A} to \mathbf{B}.
- But A prefers \mathbf{Z} to Y .
since this is the first rejection by a valid partner
- Thus A-Z is unstable in S. -

Stable Matching Summary

- Stable matching problem. Given preference profiles of \mathbf{n} men and \mathbf{n} women, find a stable matching.

```
no man and woman prefer to be with each
other than with their assigned partner
```

- Gale-Shapley algorithm. Finds a stable matching in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
- Man-optimality. In version of GS where men propose, each man receives best valid partner.

```
w}\mathrm{ is a valid partner of m}\mathrm{ if there exist some
stable matching where m}\mathrm{ and w are paired
```

- Q. Does man-optimality come at the expense of the women?

Woman Pessimality

- Woman-pessimal assignment. Each woman receives worst valid partner.
- Claim. GS finds woman-pessimal stable matching S*.
- Proof.
- Suppose $\mathbf{A}-\mathbf{Z}$ matched in \mathbf{S}^{*}, but \mathbf{Z} is not worst valid partner for A.
- There exists stable matching \mathbf{S} in which \mathbf{A} is paired with a man, say \mathbf{Y}, whom she likes less than \mathbf{Z}.
- Let B be Z's partner in \mathbf{S}.
$\begin{array}{lll}\text { - } \mathbf{Z} \text { prefers } \mathbf{A} \text { to } \mathbf{B} \text {. }- \text { man-optimality of } \mathbf{S}^{*} \\ \text { - Thus, } \mathbf{A}-\mathbf{Z} \text { is an unstable in } \mathbf{S} \text {. - } & \mathbf{S}^{*} \\ \underbrace{\text { Amy-Yuri }}_{\text {Brenda-Zoran }}\end{array}$

Extensions: Matching Residents to Hospitals

- Ex: Men \approx hospitals, Women \approx med school residents.
- Variant 1. Some participants declare others as unacceptable.
- Variant 2. Unequal number of men and women.
- Variant 3. Limited polygamy.
e.g. hospital \mathbf{X} wants to hire 3 residents
- Def. Matching \mathbf{S} is unstable if there is a hospital \mathbf{h} and resident \mathbf{r} such that:
- h and r are acceptable to each other; and
- either r is unmatched, or r prefers h to her assigned hospital; and
- either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

Application: Matching Residents to Hospitals

- NRMP. (National Resident Matching Program)
- Original use just after WWII.

```
predates computer usage
```

- Ides of March, 23,000+ residents.
- Rural hospital dilemma.
- Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
- Rural hospitals were under-subscribed in NRMP matching.
- How can we find stable matching that benefits "rural hospitals"?
- Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!

Deceit: Machiavelli Meets GaleShapley

- Q. Can there be an incentive to misrepresent your preference profile?
- Assume you know men's propose-and-reject algorithm will be run.
- Assume that you know the preference profiles of all other participants.
- Fact. No, for any man. Yes, for some women. No mechanism can guarantee a stable matching and be cheatproof.

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	A	B	C
Yuri	B	A	C
Zoran	A	B	C

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	X	Z
Brenda	X	Y	Z
Claire	X	Y	Z

Women's True Preference Profile

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Y	Z	X
Brenda	X	Y	Z
Claire	X	Y	Z

Amy Lies
24

