
CSE 521 – Algorithms – Winter 2010

Assignment 5 Suggested Solution

1 Multicommodity Flows

The value of the i-th commodity flow is
∑

u:(si,u)∈E fi(si, u). Then the LP is:

Maximize
∑p

i=1

∑
u:(si,u)∈E fi(si, u)

s.t
∑

u:(u,v)∈E fi(u, v)−
∑

w:(v,w)∈E fi(v, w) = 0 for all 1 ≤ i ≤ p, v ∈ V \ {si, ti}∑p
i=1 fi(u, v) ≤ c(u, v) for all (u, v) ∈ E

fi(u, v) ≥ 0 for all i, (u, v)

where the first constraint conserves flow at every vertex, and the second constraint upper bounds
the total flow on every edge.

2 Scheduling

(a) Variables xi,j indicates whether job i is assigned to machine j.

Minimize T
s.t. T −

∑n
i=1 xi,jpi,j ≥ 0 for every machine j∑m

j=1 xi,j ≥ 1 for every job i
xi,j ∈ {0, 1}

The second constraint says that every job must be assigned to some machine(s) (but optimality
ensures that exactly one machine is assigned). As pi,j ≥ 0, it is not neccessary to put nonnegative
constraint on T .

(b)

Minimize T
s.t. T −

∑n
i=1 xi,jpi,j ≥ 0 for every machine j∑m

j=1 xi,j ≥ 1 for every job i
xi,j ≥ 0 for every i, j

(c) We have machine-variables bj and job-variables ai.

1



Maximize
∑n

i=1 ai
s.t.

∑m
j=1 bj = 1

−pi,jbj + ai ≤ 0 for every i, j
ai, bj ≥ 0 for every i, j

(d) Since the primal LP is feasible and its optimality is bounded (must be nonnegative), strong
duality holds. Therefore, OPTIP ≥ OPTLP = OPTdual−LP .

(e) Let’s consider the following instance: there are 1 job and m machines, and the executing times
of the job on all machines are the same, say p = 1. Obviously the optimal makespan is T = 1.
However in the LP we are allowed to use fractional assignments. Assigning evenly to all machines,
the optimal value of the LP is 1/m with all x1,j = 1/m. The integrality gap of the LP is lower
bounded by this example, which is m.

(f) Let ei,j be the random variable, where ei,j = 1 if job i is assigned to machine j, and ei,j = 0
otherwise. Thus E[ei,j ] = Pr[ei,j = 1] = x∗i,j . We also have Tj =

∑
i ei,jpi,j . Thus,

E[Tj ] = E[
∑
i

ei,jpi,j ] =
∑
i

E[ei,jpi,j ] =
∑
i

x∗i,jpi,j .

3 Weighted Set-Cover

We will have m(t)
i , w

(t)
i , φ(t), p

(t)
i as defined in the unweighted version. The only difference now is

that at step t the adversary will pick the set Sjt that maximizes∑
i∈Sjt

p
(t)
i

cjt
=

∑
i∈Sjt

w
(t)
i

cjtφ
(t)

.

First let’s bound the above quantity. Let SOPT = {SOPT1, SOPT2, . . .} be the minimum weighted
cover with weight OPT =

∑
j cOPTj . Thus,

1
OPT

=
∑n

i=1 p
(t)
i∑

j cOPTj
≤

∑
j

∑
i∈SOPTj

p
(t)
i∑

j cOPTj
≤ max

j

∑
i∈SOPTj

p
(t)
i

cOPTj
,

where the first inequality follows since SOPT is a cover, and the second inequality follows from the
fact that

∑
j xj∑
j yj
≤ maxj

xj

yj
for any positive numbers xj , yj .

From the way the adversary picks Sjt , 1/OPT ≤
∑

i∈Sjt
w

(t)
i

cjtφ
(t) , or

∑
i∈Sjt

w
(t)
i ≥ cjtφ

(t)/OPT .
Then,

φ(t+1) = φ(t) −
∑
i∈Sjt

w
(t)
i ≤ φ

(t)(1− cjt/OPT ) ≤ φ(t)e−cjt/OPT ,

where the last inequality follows from 1− x ≤ e−x for x ≥ 0.
Note that since

∑
i∈Sjt

w
(t)
i ≥ cjtφ(t)/OPT , we also have cjt ≤ OPT .
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Since φ(1) = n, we have φ(t+1) ≤ ne−(
∑t

k=1 cjk
)/OPT . Let t∗ be the minimum integer such that

(
∑t∗

k=1 cjk)/OPT > lnn. We then have φ(t∗+1) < 1 which means φ(t∗+1) = 0 and everyone is
covered. The cost of this cover is

t∗∑
k=1

cjk =
t∗−1∑
k=1

cjk + cjt∗ ≤ (lnn+ 1)OPT.

This shows that the greedy algorithm (which chooses sets as the adversary does) has approxi-
mation ratio lnn+ 1.
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