CSE 521 - Algorithms - Winter 2010 Assignment 5 Suggested Solution

1 Multicommodity Flows

The value of the i-th commodity flow is $\sum_{u:\left(s_{i}, u\right) \in E} f_{i}\left(s_{i}, u\right)$. Then the LP is:
Maximize $\sum_{i=1}^{p} \sum_{u:\left(s_{i}, u\right) \in E} f_{i}\left(s_{i}, u\right)$
s.t $\quad \sum_{u:(u, v) \in E} f_{i}(u, v)-\sum_{w:(v, w) \in E} f_{i}(v, w)=0 \quad$ for all $1 \leq i \leq p, v \in V \backslash\left\{s_{i}, t_{i}\right\}$ $\sum_{i=1}^{p} f_{i}(u, v) \leq c(u, v) \quad$ for all $(u, v) \in E$ $f_{i}(u, v) \geq 0 \quad$ for all $i,(u, v)$
where the first constraint conserves flow at every vertex, and the second constraint upper bounds the total flow on every edge.

2 Scheduling

(a) Variables $x_{i, j}$ indicates whether job i is assigned to machine j.

Minimize T
s.t. $\quad T-\sum_{i=1}^{n} x_{i, j} p_{i, j} \geq 0 \quad$ for every machine j
$\sum_{j=1}^{m} x_{i, j} \geq 1 \quad$ for every job i $x_{i, j} \in\{0,1\}$

The second constraint says that every job must be assigned to some machine(s) (but optimality ensures that exactly one machine is assigned). As $p_{i, j} \geq 0$, it is not neccessary to put nonnegative constraint on T.
(b)

```
Minimize T
```



```
    \sum m=1 \mp@subsup{x}{i,j}{}\geq1 for every job i
    xi,j\geq0 for every i,j
```

(c) We have machine-variables b_{j} and job-variables a_{i}.

```
Maximize }\mp@subsup{\sum}{i=1}{n}\mp@subsup{a}{i}{
s.t. }\quad\mp@subsup{\sum}{j=1}{m}\mp@subsup{b}{j}{}=
    - pi,j}\mp@subsup{b}{j}{}+\mp@subsup{a}{i}{}\leq0\quad\mathrm{ for every }i,
    ai, ,}\mp@subsup{j}{j}{\geq}00\quad\mathrm{ for every i,j
```

(d) Since the primal LP is feasible and its optimality is bounded (must be nonnegative), strong duality holds. Therefore, $O P T_{I P} \geq O P T_{L P}=O P T_{\text {dual-LP }}$.
(e) Let's consider the following instance: there are 1 job and m machines, and the executing times of the job on all machines are the same, say $p=1$. Obviously the optimal makespan is $T=1$. However in the LP we are allowed to use fractional assignments. Assigning evenly to all machines, the optimal value of the LP is $1 / m$ with all $x_{1, j}=1 / m$. The integrality gap of the LP is lower bounded by this example, which is m.
(f) Let $e_{i, j}$ be the random variable, where $e_{i, j}=1$ if job i is assigned to machine j, and $e_{i, j}=0$ otherwise. Thus $\mathbf{E}\left[e_{i, j}\right]=\operatorname{Pr}\left[e_{i, j}=1\right]=x_{i, j}^{*}$. We also have $T_{j}=\sum_{i} e_{i, j} p_{i, j}$. Thus,

$$
\mathbf{E}\left[T_{j}\right]=\mathbf{E}\left[\sum_{i} e_{i, j} p_{i, j}\right]=\sum_{i} \mathbf{E}\left[e_{i, j} p_{i, j}\right]=\sum_{i} x_{i, j}^{*} p_{i, j} .
$$

3 Weighted Set-Cover

We will have $m_{i}^{(t)}, w_{i}^{(t)}, \phi^{(t)}, p_{i}^{(t)}$ as defined in the unweighted version. The only difference now is that at step t the adversary will pick the set $S_{j_{t}}$ that maximizes

$$
\frac{\sum_{i \in S_{j_{t}}} p_{i}^{(t)}}{c_{j_{t}}}=\frac{\sum_{i \in S_{j_{t}}} w_{i}^{(t)}}{c_{j_{t}} \phi^{(t)}} .
$$

First let's bound the above quantity. Let $S_{O P T}=\left\{S_{O P T 1}, S_{O P T 2}, \ldots\right\}$ be the minimum weighted cover with weight $O P T=\sum_{j} c_{O P T j}$. Thus,

$$
\frac{1}{O P T}=\frac{\sum_{i=1}^{n} p_{i}^{(t)}}{\sum_{j} c_{O P T j}} \leq \frac{\sum_{j} \sum_{i \in S_{O P T j}} p_{i}^{(t)}}{\sum_{j} c_{O P T j}} \leq \max _{j} \frac{\sum_{i \in S_{O P T j}} p_{i}^{(t)}}{c_{O P T j}}
$$

where the first inequality follows since $S_{O P T}$ is a cover, and the second inequality follows from the fact that $\frac{\sum_{j} x_{j}}{\sum_{j} y_{j}} \leq \max _{j} \frac{x_{j}}{y_{j}}$ for any positive numbers x_{j}, y_{j}.

From the way the adversary picks $S_{j_{t}}, 1 / O P T \leq \frac{\sum_{i \in S_{j_{j}}} w_{i}^{(t)}}{c_{j_{t}} \phi^{(t)}}$, or $\sum_{i \in S_{j_{t}}} w_{i}^{(t)} \geq c_{j_{t}} \phi^{(t)} / O P T$. Then,

$$
\phi^{(t+1)}=\phi^{(t)}-\sum_{i \in S_{j_{t}}} w_{i}^{(t)} \leq \phi^{(t)}\left(1-c_{j_{t}} / O P T\right) \leq \phi^{(t)} e^{-c_{j_{t}} / O P T},
$$

where the last inequality follows from $1-x \leq e^{-x}$ for $x \geq 0$.
Note that since $\sum_{i \in S_{j_{t}}} w_{i}^{(t)} \geq c_{j_{t}} \phi^{(t)} / O P T$, we also have $c_{j_{t}} \leq O P T$.

Since $\phi^{(1)}=n$, we have $\phi^{(t+1)} \leq n e^{-\left(\sum_{k=1}^{t} c_{j_{k}}\right) / O P T}$. Let t^{*} be the minimum integer such that $\left(\sum_{k=1}^{t^{*}} c_{j_{k}}\right) / O P T>\ln n$. We then have $\phi^{\left(t^{*}+1\right)}<1$ which means $\phi^{\left(t^{*}+1\right)}=0$ and everyone is covered. The cost of this cover is

$$
\sum_{k=1}^{t^{*}} c_{j_{k}}=\sum_{k=1}^{t^{*}-1} c_{j_{k}}+c_{j_{t^{*}}} \leq(\ln n+1) O P T
$$

This shows that the greedy algorithm (which chooses sets as the adversary does) has approximation ratio $\ln n+1$.

