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Lecture 13: Spectral Clustering, Power Method
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

13.1 Spectral Embedding

Let g be an eigenvector of the normalized Laplacian matrix, D−1/2LD−1/2. Then, for f = D−1/2g we have

gTD−
1
2LD−

1
2 g

gT g
=

fTLf

gTD−1/2DD−1/2g
=
fTLf

fTDf
=

∑
i∼j(fi − fj)2∑

d(i)f2i
= R(f), (13.1)

where as usual i ∼ j means that i is connected to j in G. Let g1, ..., gK be the first k eigenvectors of
normalized Laplacian matrix. Define f i = D−

1
2 gi. Recall that by variational characterization, g1, . . . , gk are

minimizers of gTD−1/2LD−1/2g
gT g

. So, by the above equation, f1, . . . , fk are minimizers of R(f).

Definition 13.1 (Spectral embedding). For an integer k ≥ 2, the spectral embedding of G(V,E) is a mapping
F : V → Rk−1 where for each vertex i,

F (i) = (f2(i), . . . , fk(i)).

Similarly, we can define R(F ) as follows:

R(F ) =

∑
‖F (i)− F (j)‖2∑
i∼j di ‖F (i)‖2

=

∑
i∼j
∑k
`=2(f `i − f `j )2∑

i

∑k
`=2 d(i)f `i

2

Swapping the order of the sums, we can write

R(F ) =

∑k
`=2

∑
i∼j(f

`
i − f `j )2∑k
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∑
i d(i)f `i

2 =
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`=2 f

`TLf `∑k
`=2 f

`TDf
=

∑k
`=2 g

`TD−1/2LD−1/2∑k
`=2 g

`T g`
=

1

k

k∑
i=2

λi,

where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the normalized Laplacian matrix. The second equality
follows by (13.1) and the last equality follows by orthonormality of gi’s. Let the energy of a mapping of a
graph G be the sum of the squared of the length of the edges of G,

E(F ) =
∑
i∼j
‖F (i)− F (j)‖2 .

It can be shown that the spectral embedding has the smallest energy among all isotropic embeddings of G
into k dimensions. Here, we do not formally define the term isotropic, roughly speaking, it corresponds to
rotationally invarint embeddings of G.

13.2 Spectral Clustering.

Given a set of data points X1, . . . , Xn, the spectral clustering algorithm of Ng, Jordan and Weiss [NJW02]
works as follows:
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1) Construct a weighted graph G with vertices [n] and for each pair of vertices i, j let

wi,j = exp(−‖Xi −Xj‖2 /σ2)

2) for a carefully chosen constant σ.

3) Let g1, . . . , gk be the first k-orthonormal eigenvectors of the normalized Laplacian of G. Compute the
spectral embedding of G as defined above. For each pair of vertices i, j let

d(i, j) =

∥∥∥∥ F (i)

‖F (i)‖
− F (j)

‖F (j)‖

∥∥∥∥ .
4) Run the k-means algorithm with respect to the above distance function and return the output as a

clustering of the data.

Take a look at the following figure for a simulation of the spectral clustering algorithm. Let us give a high-
level intuition of the above algorithm. As we mentioned above, the spectral embedding F is the mapping
with minimum energy; because of that it maps the endpoints of edges of G with large weights to close
points. Therefore, the vertices who belong to the same cluster will mostly likely map to the same region of
Rk. Consequently, even though the k-means algorithm was unable to find the clusters with respect to the
original data points, it can correctly find them with respect to the spectral embedding distance function.
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Ng, Jordan and Weiss do not provide any theory performance guarantee of the spectral clustering algorithm.
Recently, there has a been major progress on proving a theoretical bound on the quality of the output of
this algorithm [LOT12; Lou+12; PSZ15].

Theorem 13.2 ([LOT12]). For a given graph G = (V,E) and an integer k ≥ 2, let

φk(G) = min
disjoint S1,S2,...,Sk

max
Si

φ(Si),

be the maximum conductance of the best k disjoint clusters of G. Then,

λk ≤ φk(G) ≤ O(k2 ·
√
λk),

where λk is the k-th smallest eigenvalue of the normalized Laplacian of G. Furthermore, there is an algorithm
which returns k disjoint sets S1, . . . , Sk such that maxi φ(Si) ≤ O(k2

√
λk).
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13.3 Power method

As alluded to in the previous lectures, SVD is a very time consuming algorithm. It typically takes O(n3)
to run SVD on an n× n matrix. In this section we discuss a fast algorithm known as the Power method to
approximately find the largest (or a few largest) eigenvalues of a given PSD matrix.

Algorithm 1 Power method

1: Let x ∈ Rn be a Gaussian vector, i.e., each coordinate of x is an independent standard normal random
variable. Set x0 ← x.

2: for i = 1→ k do
3: xi = Mxi−1
4: end for
5: return

xTkMxTk
xTk x

T
k

.

Note that k is a parameter of the algorithm. For larger values of k the algorithm gives better approximation
of the largest eigenvalue of M as stated in the following theorem.

Theorem 13.3. For any PSD matrix M ∈ Rn×n with eigenvalues λ1 ≥, ...,≥ λn ≥ 0, and any integer k > 0
and ε > 0, with constant probability,

xTkMxk
xTk xk

≥ λ1(1− ε)
1 + 10n(1− ε)2k

Therefore, to get a 1 − ε multiplicative approximation of the largest eigenvalue of M it is enough to let
k = 2 logn

ε log 1
ε , so that

(1− ε)2k ≈ e−4 log(n) log 1
ε ∼ ε

50n
,

and with constant probability we get

xTkMxk
xTk xk

≥ λ1(1− ε)
1 + ε/5

≥ λ1(1− 2ε).

In addition observe that the algorithm only uses k matrix vector product. Each matrix vector product can
be computed in time O(nnz(M)) where nnz(M) is the number of nonzero entries of M , i.e., it is the length
of the input to the algorithm. Therefore, Algorithm 1 in time O(log(n) nnz(M) log ε−1/ε) returns a 1 − ε
multiplicative approximation of the largest eigenvalue of M with a constant probability.

In the rest of this section we prove Theorem 13.3. We break the proof to 3 lemmas. Throughout the proof
assume that v1, . . . , vn are orthonormal eigenvectors of M corresponding to λ1 ≥ λ2 ≥ . . .
geqλn.

Lemma 13.4. P
[
|〈x, v1〉| ≥ 1

2

]
≥ Ω(1)

This lemma naturally follows from the rotational invariance property Gaussian vectors. In particular 〈x, v1
is distributed as a standard normal random variable; so with a constant probability |〈x, v1〉| is more than
1/2.

Lemma 13.5. P
[
‖x‖2 ≤ 2n

]
≥ 1− e−n8 .

The proof of the above lemma follows from the concentration inequality of the sum of squares of independent
standard normal random variables that we discussed in Lecture 6.
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Lemma 13.6. For all any vector x ∈ Rn, and y = Mkx we have

yTMy

yT y
≥ (1− ε)λ1

1 + ‖x‖2
〈x,v1〉2 (1− ε)2k−1

Note that the above statement holds for any vector x, and we not going to use the randomness of x anymore.
It is easy to see that Theorem 13.3 follows from the above 3 lemmas. In particular by lemmas 13.4 and 13.5
with a constant probability ‖x‖2 /〈x, v1〉2 ≤ 4n, which implies the theorem.

Proof. Let

x =

n∑
i=1

aivi,

where for each i, ai = 〈x, vi〉. First, observe that

yTMy = xTM2k+1x

=

(
n∑
i=1

aivi

)
M2k+1

(
n∑
i=1

aivi

)

=

(
n∑
i=1

aivi

)(
n∑
i=1

aiλ
2k+1
i vi

)
=

n∑
i=1

a2iλ
2k+1
i ,

where the last equality follows by orthonormality of v1, . . . , vn. Similarly, we can write

yT y = xTM2kx =

n∑
i=1

a2iλ
2k
i

Therefore, to prove the lemma it is enough to show that∑n
i=1 a

2
iλ

2k+1
i∑n

i=1 a
2
iλ

2k
i

≥ (1− ε)λ1
1 + ‖x‖2

a1
(1− ε)2k−1

. (13.2)

The rest of the proof is an algebraic manipulation of the ratio on the LHS.

Choose an integer j ≥ 1 such that λj ≥ (1 − ε)λ1 and λj+1 < (1 − ε)λ1. Think of λ1, . . . , λj as “big”
eigenvalues and the rest of them as “small” eigenvalues. The main intuition of is that the small eigenvalues
have negligible contribution to the numerator and denominator so we we can throw them away. On the other

hand, for any big eigenvalue λi the ratio of the contributions of λi is at least
aiλ

2k+1
i

aiλ2k
i

= λi ≥ (1− ε)λ1.

First, observe that
n∑
i=1

aiλ
2k+1
i ≥ λ1(1− ε)

j∑
i=1

a2iλ
2k
i (13.3)

Secondly, observe that

n∑
i=j+1

a2iλ
2k
i ≤

n∑
i=j+1

a2iλ
2k
1 (1− ε)2k = (1− ε)2kλ2k1

n∑
i=j+1

a2i ≤ ‖x‖
2
λ2k1 (1− ε)2k
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So,

yTMy

yT y
≥

λ1(1− ε)
∑j
i=1 a

2
iλ

2k
i∑j

i=1 a
2
iλ

2k
i + ‖x‖2 λ2k1 (1− ε)2k

≥ 1∑j
i=1 a

2
iλ

2k
i

λ1(1−ε)
∑
a2iλ

2k
i

+
‖x‖2λ2k

1 (1−ε)2k
a21λ

2k
1 (1−ε)λ1

=
1

1
λ1(1−ε) + ‖x‖2(1−ε)2k−1

a21

≥ (1− ε)λ1
1 + ‖x‖2

a21
(1− ε)2k−1

This proves (13.2) which completes the proof of Lemma 13.6 and Theorem 13.3.

We can use an algorithm similar to Algorithm 1 to estimate the second largest eigenvector of M . Suppose
we know the largest eigenvector v1 of M and let x be a random Gaussian vector. Then, we let

x0 = x− 〈v1, x〉v1,

i.e., we project x onto the space orthogonal to v1. The rest of the algorithm works as before, for each i ≥ 1
we let

xi = Mxi−1,

and we return
xTkMxk
xTk xk

. The same proof shows that with a constant probability

xTkMxk
xTk xk

≥ λ2(1− ε)
1 + 10n(1− ε)2k

.

Now, let’s see if we can use the same idea to approximate the 2nd smallest eigenvector of the normalized
Laplacian matrix. Firstly, note that the performance of the spectral partitioning algorithm is robust to the
Rayleigh quotient. That is, for any given vector y such that y ⊥ 1, the algorithm returns a set S such that

φ(S) ≤ O

√yT Ld y

yT y

 .

On idea is to use the PSD matrix M = 2I − L
d . Observe that the 2nd largest eigenvector of M is the same

as the 2nd smallest eigenvector of L/d. So, by Theorem 13.3, with constant probability, Algorithm 1 returns
a vector y such that

yTMy ≥ (1− ε)(2− λ2)yT y

where λ2 is the 2nd smallest eigenvalue of L/d. Using the definition of M ,

yTMy = yT (2I − L/d)y = 2yT y − yT L
d
y

Therefore,
yT Ld y

yT y
≤ λ2 + 2ε

So, to get a constant factor approximation of λ2 we have to let ε = O(λ2). But in that case, the running
time of the power method is O(log(n)/λ2). So, for a cycle it runs in time O(n2 log n) which is very slow.

Instead, the idea is to use the inverse of the normalized Laplacian matrix. Unfortunately, we are not aware
of any linear time algorithms to compute the inverse of a matrix. But, to run the power method it is enough
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to solve systems of linear of equations. In particular, instead of letting xi = (L/d)−1xi−1, we can solves the
following systems of linear equations

L

d
xi = xi−1.

There are very fast algorithms that solve a system of linear equations corresponding to a Laplacian matrix of
a graph. We do not cover these algorithms in this course but we refer interested students to [ST04; KMP10;
KMP11; Kel+13; KS16].
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