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A Markov Chain is a random process on a set of states Ω. There are weighted (directed) links between the
states of the chain. For any state a ∈ Ω the chain moves to random neighbor of a independent of the past.
This transition is proportional to the weight of the edge. In particular, say an state a is connected to b, c, d
and wa,b = 0.1, wa,c = 0.4, wa,d = 0.2. Then,

P [a→ b] =
0.1

0.1 + 0.2 + 0.4
=

1

7
, P [a→ c] =

4

7
, and P [a→ d] =

2

7
.

The latter is known as the Markovian property. That is, let X0, X1, . . . , Xt be the sequence of states that
we took at times 0, 1, . . . , t. Then,

P [Xt+1 = a|X0, . . . , Xt] = P [Xt+1 = a|Xt] .

Markov Chains have many applications in different areas of science including computer science, mathematics,
finance, economics, etc. Let us describe an application in speech recognition. One of the important tasks
in natural language processing is to predict the next word of a sentence given the past words. One way to
model this problem is by a Markov chain. Say we have a chain where each state represents one of the words
in English. There is an edge from state a to b if there is a chance that word b appears after a. The weight
of the edge connecting a, b is the probability that b comes after a, i.e.,

P [b|a] =
P [ab]

P [a]
.

One can use a large text corpus to empirically estimate the probabilities in the RHS, so construct the chain.
Given the chain and the current last word of the sentence we can stochastically predict the next work.

In the rest of this lecture we study reversible Markov chains. We will describe the formal definition later.
This family of Markov chains correspond to random walks on (weighted) undirected graphs. So, from now
on, let G = (V,E) be a weighted undirected graph corresponding to our Markov chain. The transition
probability of the chain is the matrix P where for each pair of vertices i, j let Pi,j is the probability that the
next state is j conditioned on the current state being i. We have

Pi,j =
wi,j
dw(i)

,

where as usual wi,j is the weight of the edge connecting i to j and dw(i) is the weighted degree of i. We can
also define P as follows:

P = D−1A. (14.1)

We say x is a distribution over V if
∑
i xi = 1 and xi ≥ 0 for all i. Suppose at time 0 we start the chain at

state 1. Then, at time 1 we will be at a state chosen random according to the distribution 11P , where 11 is
the indicator vector of 1. In general if we start the chain at a state chosen according to a distribution x, in
the next step we will be at xTP .

Definition 14.1 (Stationary distribution). We say a vector π ∈ Rn is a stationary distribution of the chain
if for any state i, ∑

j

Pj,iπj = πi,
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or in other words,

πP = π.

This says that if we start the chain according to π, the distribution of the next step is the same as what we
started with.

.

The following is a fundamental theorem of Markov Chains:

Theorem 14.2. For any graph G, if G is connected and non-bipartite, then it has a unique stationary
distribution. Furthermore, for any starting distribution x,

lim
t→∞

xP t = π.

Above theorem naturally extends to non-reversible chain. Let us give a few example to show that the
assumptions in the above theorem are necessary. First, let G be a single edge (1, 2) and we start at 1. It
follows that at odd times we will be at 2 and at even times we will be at 1. So, 11P t never converges.

Now, suppose G is a non-bipartite graph but it has two connected components. In this case the chain has
multiple stationary distributions and depending on the state that we start the chain we may converge to
either of them.

Now, let us study the stationary distribution of reversible chains. We need to find a vector π such that for
all i ∑

j

Pj,iπj = πi.

By the definition of P it is enough to have π such that∑
j

wi,j
dw(j)

πj = πi.

So, it is enough to let πj ∝ dw(j). More precisely set

πj =
dw(j)∑
k dw(k)

.

In this case, ∑
j

Pj,iπj =
∑
j

wi,j
dw(j)

· dw(j)∑
k dw(k)

=
dw(i)∑
k dw(k)

= πi.

14.1 Mixing Time

Mixing time is essentially the time it takes for the chain to reach or get close to the stationary distribution.

Definition 14.3 (Mixing Time). The mixing time of the chain corresponding to a graph G is the smallest
time t such that for any starting distribution x,∥∥xP t − π∥∥

1
≤ 1/4.

As usual, ‖x− y‖1 =
∑
i |xi − yi|.
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There is nothing special about the number 1/4 in the above definition. As we will see, if the mixing time of
a chain is t, then for any ε, and any starting state x,∥∥∥xP t log 1

ε − π
∥∥∥
1
≤ ε.

The above definition is very strong. In particular, if the `1 distance of two probability distributions x, y is ε,
then for any event E ⊆ V ,

|Px [E ]− Py [E ] | ≤ ε.

In the rest of this section we prove a strong bound on the mixing time using the second smallest eigenvalue
of the normalized Laplacian of G.

Firstly, recall normalized adjacency matrix Ã = D−1/2AD−1/2 and the normalized Laplacian matrix L̃ =
D−1/2LD−1/2. In the previous lectures we showed that any eigenvalue λ of L̃ corresponds to an eigenvalue
1 − λ of Ã. Now, we see that any eigenvalue of Ã is also an eigenvalue of P . In particular, assume λ is an
eigenvalue of Ã with eigenvector v. Then,

vÃ = vD−1/2AD−1/2 = λv

Multiply both sides by D1/2 from the right.

λD1/2v = vD−1/2A = vD−1/2D−1A = vD−1/2P.

So, the vector u = D−1/2v is an eigenvector of P with eigenvalue λ. Let us summarize the above discussion.
Since we said that the eigenvalues of Ã are always in the interval [−1, 1], we obtain the same holds for P .
In particular,

1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1.

Furthermore, the stationary distribution, π, is an eigenvector of the eigenvalue 1.

Theorem 14.4. Let 1 = λ1 ≥ · · · ≥ λn be the eigenvalues of P . Then, the mixing time is at most

O

(
log mini

1
πi

1−max{λ2, |λn|}

)
.

In particular, if G is d-regular, then the mixing time is

O

(
log n

1−max{λ2, |λn|}

)
.

Here is a high-level intuition of the above bounds. λ2 corresponds to how far G is from being disconnected.
In particular, if G is disconnected λ2 = 1 and the bound becomes infinity. λn measures how far G is from
being a bipartite graph. If G is biparitte, λn = −1 and the chain never mixes.

There is a simple trick to get around the bipartiteness and λn in the statement of the above theorem. The
idea is to make the chain lazy. For each vertex i we add loop with weight dw(i). It is not hard to see that
this change preserves the stationary distribution of the chain and makes λn ≥ 0. In the language of Markov
chains, this means that at any state i with probability 1/2 we wait and do nothing and with the remaining
probability we follow the chain. It is not hard to see that the mixing time of the lazy chain is no more than
twice the mixing time of the original chain.

Corollary 14.5. Let 1 = λ1 ≥ · · · ≥ λn be the eigenvalues of a lazy random walk on G. The mixing time is
at most

O

(
log mini

1
πi

1− λ2

)
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As we mentioned before 1−λ2 is equal to the second smallest eigenvalue of L̃. It is also known as the spectral
gap of the chain. Now, we can use Cheeger’s inequality to lower bound 1− λ2. By Cheeger’s inequality,

φ(G) ≤
√

2(1− λ2)⇒ (1− λ2) ≥ φ(G)2/2.

Corollary 14.6. The mixing time of the lazy random walk on any graph G is at most

O

(
log mini

1
πi

φ(G)2

)
.

In particular, if G is d-regular, then the mixing time is O(log n/φ(G)2).

For example, using the above theorem we have:

i) The mixing time of a cycle of length n is O(n2 log n).

ii) The mixing time of a
√
n×
√
n grid is O(n log n).

iii) The mixing time of the complete graph Kn is O(log n).

iv) The mixing time of the hypercube {0, 1}logn is O(log3 n).

In the rest of this section we prove Theorem 14.4. For the simplicity of the notation, we only prove the
theorem for regular graph. In this case the stationary distribution π is the uniform distribution. Let
λ1 ≥ · · · ≥ λn be the eigenvalues of P with corresponding orthonormal eigenvectors v1, . . . , vn. Instead of
directly bounding the `1 norm we upper bound the `2 norm, i.e., we show∥∥xP t − π∥∥

2
≤ 1

4
√
n
. (14.2)

Then, the theorem follows from the fact that∥∥xP t − π∥∥
1
≤
√
n
∥∥xP t − π∥∥

2
.

The proof is very similar to the proof of the power method.

Let x be probability distribution vector on V . We can write,

x =
∑
i

〈x, vi〉vi =
∑
i

aiv
i,

for ai = 〈x, vi〉. Therefore, we can write

xTP t =
∑
i

aiλ
t
iv
i

Now, we show a1λ
t
1v1 = π1. Firstly, λt1 = λ1 = 1. Secondly, v1i = 1/

√
n for all i. So,

a1〈x, v1〉 =
∑
i

xi ·
1√
n

=
1√
n
· ‖x‖1 =

1√
n
,

where the last equality uses that x is a probability distribution. Therefore,

a1λ
t
1v1 =

1√
n
· v1 = π.



Lecture 14: Random Walks 14-5

So, we can write,

xTP t − π =

n∑
i=1

aiλ
t
iv
i − π =

n∑
i=2

aiλ
t
iv
i.

Let λ∗ = max{λ2, |λn|}. By the orthonormality of vi’s we have

∥∥xTP t − π∥∥2
2
≤

∥∥∥∥∥
n∑
i=2

aiλ
t
iv
i

∥∥∥∥∥
2

2

=

n∑
i=2

a2iλ
2t
i

≤
n∑
i=2

a2iλ
∗2t

≤ ‖x‖2 λ∗2t ≤ λ∗2t.

So, for t = O( logn
1−λ∗ ), we have ∥∥xTP t − π∥∥2

2
≤ 1/n,

which proves (14.2). This completes the proof of Theorem 14.4.
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